-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathutils.py
62 lines (45 loc) · 2.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import math
import numpy as np
import theano
import theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
def srng(seed=123):
return MRG_RandomStreams(seed=seed)
def t_repeat(x, num_repeats, axis):
'''Repeats x along an axis num_repeats times. Axis has to be 0 or 1, x has to be a matrix.'''
if num_repeats == 1:
return x
else:
if axis == 0:
return T.alloc(x.dimshuffle(1, 0, 'x'), x.shape[1], x.shape[0], num_repeats)\
.reshape((x.shape[1], num_repeats*x.shape[0]))\
.dimshuffle(1, 0)
elif axis == 1:
return T.alloc(x.dimshuffle(0, 'x', 1), x.shape[0], num_repeats, x.shape[1]).reshape((x.shape[0], num_repeats*x.shape[1]))
def t_mean(x, axis=None, keepdims=False):
if axis is None:
return T.sum(x, keepdims=keepdims) / T.cast(x.shape[0]*x.shape[1], x.dtype)
else:
return T.sum(x, axis=axis, keepdims=keepdims) / T.cast(x.shape[axis], x.dtype)
def log_mean_exp(x, axis):
m = T.max(x, axis=axis, keepdims=True)
return m + T.log(T.mean(T.exp(x - m), axis=axis, keepdims=True))
def shared_zeros_like(shared_var):
return theano.shared(np.zeros(shared_var.get_value(borrow=True).shape).astype(shared_var.dtype),
broadcastable=shared_var.broadcastable)
def shared_ones_like(shared_var):
return theano.shared(np.ones(shared_var.get_value(borrow=True).shape).astype(shared_var.dtype),
broadcastable=shared_var.broadcastable)
def reshape_and_tile_images(array, shape=(28, 28), n_cols=None):
if n_cols is None:
n_cols = int(math.sqrt(array.shape[0]))
n_rows = int(math.ceil(float(array.shape[0])/n_cols))
def cell(i, j):
ind = i*n_cols+j
if i*n_cols+j < array.shape[0]:
return array[ind].reshape(*shape, order='C')
else:
return np.zeros(shape)
def row(i):
return np.concatenate([cell(i, j) for j in range(n_cols)], axis=1)
return np.concatenate([row(i) for i in range(n_rows)], axis=0)