-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_utilities.py
233 lines (185 loc) · 7.2 KB
/
local_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import lightning as L
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
import torch
import torch.nn.functional as F
import torchmetrics
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.dataset import random_split
from torchvision import transforms
class LightningModel(L.LightningModule):
def __init__(self, model, learning_rate):
super().__init__()
self.learning_rate = learning_rate
self.model = model
self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=200)
self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=200)
self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=200)
def forward(self, x):
return self.model(x)
def _shared_step(self, batch):
features, true_labels = batch
logits = self(features)
loss = F.cross_entropy(logits, true_labels)
predicted_labels = torch.argmax(logits, dim=1)
return loss, true_labels, predicted_labels
def training_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("train_loss", loss)
self.train_acc(predicted_labels, true_labels)
self.log(
"train_acc", self.train_acc, prog_bar=True, on_epoch=True, on_step=False
)
return loss
def validation_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("val_loss", loss, prog_bar=True)
self.val_acc(predicted_labels, true_labels)
self.log("val_acc", self.val_acc, prog_bar=True)
def test_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.test_acc(predicted_labels, true_labels)
self.log("test_acc", self.test_acc)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate)
return optimizer
def plot_csv_logger(
csv_path, model_name, loss_names=["train_loss", "val_loss"], eval_names=["train_acc", "val_acc"]
):
metrics = pd.read_csv(csv_path)
aggreg_metrics = []
agg_col = "epoch"
for i, dfg in metrics.groupby(agg_col):
agg = dict(dfg.mean())
agg[agg_col] = i
aggreg_metrics.append(agg)
df_metrics = pd.DataFrame(aggreg_metrics)
df_metrics[loss_names].plot(grid=True, legend=True, xlabel="Epoch", ylabel="Loss")
plt.savefig(f'{model_name}-loss.png')
df_metrics[eval_names].plot(grid=True, legend=True, xlabel="Epoch", ylabel="ACC")
plt.savefig(f'{model_name}-acc.png')
class TinyImageNetDataset(Dataset):
def __init__(self, img_dir, transform=None):
self.transform = transform
self.build_label_index(img_dir)
self.init_data(img_dir)
def __getitem__(self, index):
# print(f'getting image {self.images[index]} with label {self.labels[index]}')
img = Image.open(self.images[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
label = self.label_index[self.labels[index]]
return img, label
def __len__(self):
return len(self.labels)
def build_label_index(self, img_dir):
base_dir = os.path.join(img_dir, 'train')
self.label_index = {}
for idx, label in enumerate(os.listdir(base_dir)):
print(f'index={idx}, label={label}')
self.label_index[label] = idx
print(f'Total lables = {len(self.label_index)}')
class TinyImageNetTrainDataset(TinyImageNetDataset):
def init_data(self, img_dir):
self.images = []
self.labels = []
base_dir = os.path.join(img_dir, 'train')
for label in os.listdir(base_dir):
label_dir = os.path.join(base_dir, label, 'images')
for img in os.listdir(label_dir):
self.images.append(os.path.join(label_dir, img))
self.labels.append(label)
class TinyImageNetValDataset(TinyImageNetDataset):
def init_data(self, img_dir):
base_dir = os.path.join(img_dir, 'val')
df = pd.read_csv(os.path.join(base_dir, 'val_annotations.txt'), sep=r"\s+", header=None)
self.images = [os.path.join(base_dir, 'images', file) for file in df[0]]
self.labels = df[1]
class TinyImageNetDataModule(L.LightningDataModule):
def __init__(
self,
data_path='./tiny-imagenet-200',
batch_size=64,
height_width=None,
num_workers=0,
augment_data=False,
):
super().__init__()
self.data_path = data_path
self.batch_size = batch_size
self.height_width = height_width
self.num_workers = num_workers
if augment_data:
self.train_transform = transforms.Compose(
[
transforms.Resize((250, 250)),
transforms.RandomCrop(self.height_width),
transforms.RandomHorizontalFlip(p=0.2),
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
transforms.ToTensor(),
]
)
self.test_transform = transforms.Compose(
[
transforms.Resize((250, 250)),
transforms.CenterCrop(self.height_width),
transforms.ToTensor(),
]
)
else:
self.train_transform = transforms.Compose(
[
transforms.Resize(self.height_width),
transforms.ToTensor(),
]
)
self.test_transform = transforms.Compose(
[
transforms.Resize(self.height_width),
transforms.ToTensor(),
]
)
def setup(self, stage=None):
train = TinyImageNetTrainDataset(
img_dir=self.data_path,
transform=self.train_transform,
)
self.test = TinyImageNetValDataset(
img_dir=self.data_path,
transform=self.test_transform,
)
self.train, self.valid = random_split(train, lengths=[90000, 10000], generator=torch.Generator().manual_seed(42))
def train_dataloader(self):
return DataLoader(
dataset=self.train,
batch_size=self.batch_size,
drop_last=True,
shuffle=True,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
dataset=self.valid,
batch_size=self.batch_size,
drop_last=False,
shuffle=False,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
dataset=self.test,
batch_size=self.batch_size,
drop_last=False,
shuffle=False,
num_workers=self.num_workers,
)
def get_model_list():
model_list = ["resnet18", "resnet152"]
# entrypoints = torch.hub.list('pytorch/vision', force_reload=True)
# for e in entrypoints:
# if e.startswith("resnet"):
# model_list.append(e)
return model_list