Skip to content

Leveraging Retrieval-Augmented Generation for Querying Student Handbook of USTP (2023)

Notifications You must be signed in to change notification settings

CS3-USTP/TRAIL-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤖 TRAIL AI

📦 Requirements

  • ⚙️ Ollama - For running LLMs
  • 📊 ChromaDB - For data ingestion
  • 🔮 gemma2:2b-instruct-q5_1 - For generation
  • 🧠 all-mpnet-base-v2 - For embeddings
  • 🔰 mxbai-rerank-base-v1 - For reranking
  • 💬 nli-deberta-v3-base - For coherence
  • 🐍 Python 3.12 - For ml apis
  • 🦕 Node.js 23.10.0 - For JS runtime
  • 🌐 Next.js - For web application

🛠️ Setup

1️⃣ Install Node JS v23.10.0

🖥️ Windows

📦 Install PNPM

Run:

npm install -g pnpm

▶️ Run the App

Start the application with:

pnpm run dev
pnpm run vectordb

🤝 Contributing

  1. Fork the repository 🍴
  2. Create a new branch 🌱
  3. Commit your changes 📌
  4. Submit a pull request 🔄

📄 Draft Paper

This project involves the development of Trail AI, focusing on Natural Language Processing (NLP) models and student handbook embedding.


📅 Extension Project (Deadline: September 30)

  • 🔧 Task for DEDS (Deadline: September 30)

🎓 Research Congress Butuan (Deadline: September 30)

  • 📢 Contribution to the Research Congress event in Butuan.

🔗 RAG

  • 🤝 Involvement with RAG.

📘 Student Handbook Embedding

  • 🔍 Embedding of the student handbook into the project.

✅ TO-DO List

  1. 🚀 Benchmark NLP Models

    • Evaluate various NLP models to determine the best fit for the project.
  2. 💻 Make Front END & Back END of PangutanAI

    • Develop both the front-end and back-end components of the PangutanAI system.
  3. 📝 Note

    • Make sure to keep track of any other important notes.

🔗 Useful Links

About

Leveraging Retrieval-Augmented Generation for Querying Student Handbook of USTP (2023)

Resources

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •