Skip to content

Isa1asN/multiverse-optimizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Verse Optimizer for Hyperparameter Tuning

Multiverse Artistic Representation

Overview

This project implements the Multi-Verse Optimizer (MVO) to optimize hyperparameters of Stochastic Gradient Descent (SGD) for training a neural network. The goal is to improve model performance on the Energy Efficiency dataset by tuning key parameters such as learning rate, momentum, and weight decay.

How It Works

  • MVO Mechanism: Utilizes exploration (white/black hole selection) and exploitation (wormhole teleportation) to refine hyperparameters.
  • Neural Network Model: A fully connected PyTorch neural network trained for regression tasks.
  • Optimization Process:
    • Initialize a population of hyperparameter sets (universes).
    • Evaluate performance using validation loss.
    • Evolve universes using MVO strategies.
    • Select the best hyperparameter set.

Results

The optimized hyperparameters improve model performance, reducing MSE and increasing R² score compared to standard SGD settings.

References

For theoretical background, refer to:

  • Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). "Multi-Verse Optimizer: A nature-inspired algorithm for global optimization." Neural Computing and Applications, 27(2), 495-513. Available at: ResearchGate
  • UCI Machine Learning Repository - Energy Efficiency Dataset. Available at: https://archive.ics.uci.edu/dataset/242/energy+efficiency.