Skip to content

debug: fallback if MovingHorizonEstimator arrival covariance update fails #151

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Jan 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
17 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ModelPredictiveControl"
uuid = "61f9bdb8-6ae4-484a-811f-bbf86720c31c"
authors = ["Francis Gagnon"]
version = "1.2.0"
version = "1.3.0"

[deps]
ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e"
Expand Down
24 changes: 17 additions & 7 deletions src/controller/execute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ julia> round.(getinfo(mpc)[:Ŷ], digits=3)
function getinfo(mpc::PredictiveController{NT}) where NT<:Real
model = mpc.estim.model
nŶe, nUe = (mpc.Hp+1)*model.ny, (mpc.Hp+1)*model.nu
info = Dict{Symbol, Union{JuMP._SolutionSummary, Vector{NT}, NT}}()
info = Dict{Symbol, Any}()
Ŷ0, u0, û0 = similar(mpc.Yop), similar(model.uop), similar(model.uop)
Ŷs = similar(mpc.Yop)
x̂0, x̂0next = similar(mpc.estim.x̂0), similar(mpc.estim.x̂0)
Expand Down Expand Up @@ -491,7 +491,8 @@ If supported by `mpc.optim`, it warm-starts the solver at:
where ``\mathbf{Δu}_{k-1}(k+j)`` is the input increment for time ``k+j`` computed at the
last control period ``k-1``. It then calls `JuMP.optimize!(mpc.optim)` and extract the
solution. A failed optimization prints an `@error` log in the REPL and returns the
warm-start value.
warm-start value. A failed optimization also prints [`getinfo`](@ref) results in
the debug log [if activated](https://docs.julialang.org/en/v1/stdlib/Logging/#Example:-Enable-debug-level-messages).
"""
function optim_objective!(mpc::PredictiveController{NT}) where {NT<:Real}
model, optim = mpc.estim.model, mpc.optim
Expand All @@ -518,13 +519,22 @@ function optim_objective!(mpc::PredictiveController{NT}) where {NT<:Real}
if !issolved(optim)
status = JuMP.termination_status(optim)
if iserror(optim)
@error("MPC terminated without solution: returning last solution shifted",
status)
@error(
"MPC terminated without solution: estimation in open-loop "*
"(more info in debug log)",
status
)
else
@warn("MPC termination status not OPTIMAL or LOCALLY_SOLVED: keeping "*
"solution anyway", status)
@warn(
"MPC termination status not OPTIMAL or LOCALLY_SOLVED: keeping solution "*
"anyway (more info in debug log)",
status
)
end
@debug JuMP.solution_summary(optim, verbose=true)
@debug(
"calling getinfo (use logger with show_limited=false if values are truncated)",
getinfo(mpc)
)
end
if iserror(optim)
mpc.ΔŨ .= ΔŨ0
Expand Down
2 changes: 1 addition & 1 deletion src/estimator/luenberger.jl
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ function update_estimate!(estim::Luenberger, y0m, d0, u0)
end

"Throw an error if `setmodel!` is called on `Luenberger` observer w/o the default values."
function setmodel!(estim::Luenberger, model, args...)
function setmodel_estimator!(estim::Luenberger, model, args...)
if estim.model !== model
error("Luenberger does not support setmodel!")
end
Expand Down
15 changes: 9 additions & 6 deletions src/estimator/mhe/construct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -123,11 +123,6 @@ struct MovingHorizonEstimator{
validate_kfcov(nym, nx̂, Q̂, R̂, P̂_0)
lastu0 = zeros(NT, nu)
x̂0 = [zeros(NT, model.nx); zeros(NT, nxs)]
P̂_0 = Hermitian(P̂_0, :L)
Q̂, R̂ = Hermitian(Q̂, :L), Hermitian(R̂, :L)
invP̄ = Hermitian(inv(P̂_0), :L)
invQ̂_He = Hermitian(repeatdiag(inv(Q̂), He), :L)
invR̂_He = Hermitian(repeatdiag(inv(R̂), He), :L)
r = direct ? 0 : 1
E, G, J, B, ex̄, Ex̂, Gx̂, Jx̂, Bx̂ = init_predmat_mhe(
model, He, i_ym, Â, B̂u, Ĉm, B̂d, D̂dm, x̂op, f̂op, r
Expand All @@ -146,10 +141,18 @@ struct MovingHorizonEstimator{
nD0 = direct ? nd*(He+1) : nd*He
U0, D0 = zeros(NT, nu*He), zeros(NT, nD0)
Ŵ = zeros(NT, nx̂*He)
buffer = StateEstimatorBuffer{NT}(nu, nx̂, nym, ny, nd)
P̂_0 = Hermitian(P̂_0, :L)
Q̂, R̂ = Hermitian(Q̂, :L), Hermitian(R̂, :L)
P̂_0 = Hermitian(P̂_0, :L)
invP̄ = inv_cholesky!(buffer.P̂, P̂_0)
invQ̂ = inv_cholesky!(buffer.Q̂, Q̂)
invR̂ = inv_cholesky!(buffer.R̂, R̂)
invQ̂_He = Hermitian(repeatdiag(invQ̂, He), :L)
invR̂_He = Hermitian(repeatdiag(invR̂, He), :L)
x̂0arr_old = zeros(NT, nx̂)
P̂arr_old = copy(P̂_0)
Nk = [0]
buffer = StateEstimatorBuffer{NT}(nu, nx̂, nym, ny, nd)
corrected = [false]
estim = new{NT, SM, JM, CE}(
model, optim, con, covestim,
Expand Down
69 changes: 54 additions & 15 deletions src/estimator/mhe/execute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ function init_estimate_cov!(estim::MovingHorizonEstimator, _ , d0, u0)
estim.D0[1:estim.model.nd] .= d0
end
# estim.P̂_0 is in fact P̂(-1|-1) is estim.direct==false, else P̂(-1|0)
estim.invP̄ .= inv(estim.P̂_0)
invert_cov!(estim, estim.P̂_0)
estim.P̂arr_old .= estim.P̂_0
estim.x̂0arr_old .= 0
return nothing
Expand Down Expand Up @@ -108,8 +108,7 @@ function getinfo(estim::MovingHorizonEstimator{NT}) where NT<:Real
nu, ny, nd = model.nu, model.ny, model.nd
nx̂, nym, nŵ, nϵ = estim.nx̂, estim.nym, estim.nx̂, estim.nϵ
nx̃ = nϵ + nx̂
MyTypes = Union{JuMP._SolutionSummary, Hermitian{NT, Matrix{NT}}, Vector{NT}, NT}
info = Dict{Symbol, MyTypes}()
info = Dict{Symbol, Any}()
V̂, X̂0 = similar(estim.Y0m[1:nym*Nk]), similar(estim.X̂0[1:nx̂*Nk])
û0, ŷ0 = similar(model.uop), similar(model.yop)
V̂, X̂0 = predict!(V̂, X̂0, û0, ŷ0, estim, model, estim.Z̃)
Expand Down Expand Up @@ -370,7 +369,8 @@ If supported by `estim.optim`, it warm-starts the solver at:
where ``\mathbf{ŵ}_{k-1}(k-j)`` is the input increment for time ``k-j`` computed at the
last time step ``k-1``. It then calls `JuMP.optimize!(estim.optim)` and extract the
solution. A failed optimization prints an `@error` log in the REPL and returns the
warm-start value.
warm-start value. A failed optimization also prints [`getinfo`](@ref) results in
the debug log [if activated](https://docs.julialang.org/en/v1/stdlib/Logging/#Example:-Enable-debug-level-messages).
"""
function optim_objective!(estim::MovingHorizonEstimator{NT}) where NT<:Real
model, optim = estim.model, estim.optim
Expand Down Expand Up @@ -406,13 +406,22 @@ function optim_objective!(estim::MovingHorizonEstimator{NT}) where NT<:Real
if !issolved(optim)
status = JuMP.termination_status(optim)
if iserror(optim)
@error("MHE terminated without solution: estimation in open-loop",
status)
@error(
"MHE terminated without solution: estimation in open-loop "*
"(more info in debug log)",
status
)
else
@warn("MHE termination status not OPTIMAL or LOCALLY_SOLVED: keeping "*
"solution anyway", status)
@warn(
"MHE termination status not OPTIMAL or LOCALLY_SOLVED: keeping solution "*
"anyway (more info in debug log)",
status
)
end
@debug JuMP.solution_summary(optim, verbose=true)
@debug(
"calling getinfo (use logger with show_limited=false if values are truncated)",
getinfo(estim)
)
end
if iserror(optim)
estim.Z̃ .= Z̃_0
Expand All @@ -433,9 +442,17 @@ function correct_cov!(estim::MovingHorizonEstimator)
y0marr, d0arr = @views estim.Y0m[1:nym], estim.D0[1:nd]
estim.covestim.x̂0 .= estim.x̂0arr_old
estim.covestim.P̂ .= estim.P̂arr_old
correct_estimate!(estim.covestim, y0marr, d0arr)
estim.P̂arr_old .= estim.covestim.P̂
estim.invP̄ .= inv(estim.P̂arr_old)
try
correct_estimate!(estim.covestim, y0marr, d0arr)
estim.P̂arr_old .= estim.covestim.P̂
invert_cov!(estim, estim.P̂arr_old)
catch err
if err isa PosDefException
@warn("Arrival covariance is not positive definite: keeping the old one")
else
rethrow()
end
end
return nothing
end

Expand All @@ -445,9 +462,31 @@ function update_cov!(estim::MovingHorizonEstimator)
u0arr, y0marr, d0arr = @views estim.U0[1:nu], estim.Y0m[1:nym], estim.D0[1:nd]
estim.covestim.x̂0 .= estim.x̂0arr_old
estim.covestim.P̂ .= estim.P̂arr_old
update_estimate!(estim.covestim, y0marr, d0arr, u0arr)
estim.P̂arr_old .= estim.covestim.P̂
estim.invP̄ .= inv(estim.P̂arr_old)
try
update_estimate!(estim.covestim, y0marr, d0arr, u0arr)
estim.P̂arr_old .= estim.covestim.P̂
invert_cov!(estim, estim.P̂arr_old)
catch err
if err isa PosDefException
@warn("Arrival covariance is not positive definite: keeping the old one")
else
rethrow()
end
end
return nothing
end

"Invert the covariance estimate at arrival `P̄`."
function invert_cov!(estim::MovingHorizonEstimator, P̄)
try
estim.invP̄ .= inv_cholesky!(estim.buffer.P̂, P̄)
catch err
if err isa PosDefException
@warn("Arrival covariance is not invertible: keeping the old one")
else
rethrow()
end
end
return nothing
end

Expand Down
16 changes: 15 additions & 1 deletion src/general.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,4 +59,18 @@ end
to_hermitian(A::AbstractVector) = Hermitian(reshape(A, 1, 1), :L)
to_hermitian(A::AbstractMatrix) = Hermitian(A, :L)
to_hermitian(A::Hermitian) = A
to_hermitian(A) = A
to_hermitian(A) = A

"""
Compute the inverse of a the Hermitian positive definite matrix `A` using `cholesky`.

Builtin `inv` function uses LU factorization which is not the best choice for Hermitian
positive definite matrices. The function will mutate `buffer` to reduce memory allocations.
"""
function inv_cholesky!(buffer::Matrix, A::Hermitian)
Achol = Hermitian(buffer, :L)
Achol .= A
chol_obj = cholesky!(Achol)
invA = Hermitian(inv(chol_obj), :L)
return invA
end
29 changes: 29 additions & 0 deletions test/test_state_estim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -975,6 +975,35 @@ end
@test info[:Ŷ][end-1:end] ≈ [50, 30] atol=1e-9
end

@testset "MovingHorizonEstimator fallbacks for arrival covariance estimation" begin
linmodel = setop!(LinModel(sys,Ts,i_u=[1,2], i_d=[3]), uop=[10,50], yop=[50,30], dop=[5])
f(x,u,d,_) = linmodel.A*x + linmodel.Bu*u + linmodel.Bd*d
h(x,d,_) = linmodel.C*x + linmodel.Dd*d
nonlinmodel = setop!(NonLinModel(f, h, Ts, 2, 4, 2, 1, solver=nothing), uop=[10,50], yop=[50,30], dop=[5])
mhe = MovingHorizonEstimator(nonlinmodel, nint_ym=0, He=1)
preparestate!(mhe, [50, 30], [5])
updatestate!(mhe, [10, 50], [50, 30], [5])
mhe.P̂arr_old[1, 1] = -1e-3 # negative eigenvalue to trigger fallback
P̂arr_old_copy = deepcopy(mhe.P̂arr_old)
invP̄_copy = deepcopy(mhe.invP̄)
@test_logs(
(:warn, "Arrival covariance is not positive definite: keeping the old one"),
preparestate!(mhe, [50, 30], [5])
)
@test mhe.P̂arr_old ≈ P̂arr_old_copy
@test mhe.invP̄ ≈ invP̄_copy
@test_logs(
(:warn, "Arrival covariance is not positive definite: keeping the old one"),
updatestate!(mhe, [10, 50], [50, 30], [5])
)
@test mhe.P̂arr_old ≈ P̂arr_old_copy
@test mhe.invP̄ ≈ invP̄_copy
@test_logs(
(:warn, "Arrival covariance is not invertible: keeping the old one"),
ModelPredictiveControl.invert_cov!(mhe, Hermitian(zeros(mhe.nx̂, mhe.nx̂),:L))
)
end

@testset "MovingHorizonEstimator set constraints" begin
linmodel1 = setop!(LinModel(sys,Ts,i_u=[1,2]), uop=[10,50], yop=[50,30])
mhe1 = MovingHorizonEstimator(linmodel1, He=1, nint_ym=0, Cwt=1e3)
Expand Down
Loading