Alpha-Tri is a deep neural network to score the intensity similarity using all possible fragment ions, resulting in the improvement in peptide detections.
-
Compile the modified DIA-NN:
cd Alpha-Tri/DIA-NN_v1.7.12/mstoolkit make
This will generate diann-alpha.exe in the same path.
-
Make a workspace folder containing:
- diann-alpha.exe compiled by step 1
- HeLa-1h.mzML, (test data could be downloaded from figshare or PXD005573)
- lib.tsv (this spectral library could be downloaded from figshare or Pan-Human library, SAL00023)
-
Configure the operating environment by conda
conda create -n alpha python=3.6 numpy=1.18 pandas=1.0 numba scikit-learn --yes conda activate alpha conda install -c bioconda pyteomics python=3.6 --yes conda install tensorflow-gpu=1.11 keras=2.2.4 pytorch=1.1.0 cudatoolkit=9.0 -c pytorch --yes
Of note, as Prosit is trained by tf1.11, advanced version of tf and CUDA may not be compatible.
-
Run Prosit to predict the MS2 for each precursor in lib
cd Alpha-Tri/Prosit python prosit.py --lib workspace_dir/lib.tsv
This will append the predicted MS2 to each precursor and store the result to lib.pkl.
-
Run DIA-NN:
cd workspace ./diann-alpha.exe --f *.mzML --lib lib.tsv --out diann_out.tsv --threads 4 --qvalue 0.01 or diann-alpha.exe --f *.mzML --lib lib.tsv --out diann_out.tsv --threads 4 --qvalue 0.01
Meanwhile, the modified DIA-NN will generate the scores file in workspace.
-
Run Alpha-Tri:
cd Alpha-Tri/Alpha-Tri python main.py -ws workspace_dir --tri (post-scoring only by Alpha-Tri) python main.py -ws workspace_dir --xic (post-scoring only by Alpha-XIC) python main.py -ws workspace_dir --tri --xic (post-scoring by Alpha-Tri & Alpha-XIC)
Finally, we get the identification and quantitative result, alpha_out.tsv, in the workspace folder.
1. AttributeError: 'str' object has no attribute 'decode'
2. TypeError: add_weight() got multiple values for argument 'name'
These may be raised by the version incompatibility of Keras in Prosit (see the discussions in keras-team/keras#14265 and keras-team/keras#13540). You may have to install the same version of Keras:
conda install tensorflow-gpu=1.11 keras=2.2.4 pytorch=1.1.0 cudatoolkit=9.0 -c pytorch --yes