Skip to content

Using the predicted spectral to calculate the intensity similarity and improve the identification of DIA data

Notifications You must be signed in to change notification settings

YuAirLab/Alpha-Tri

Repository files navigation

Alpha-Tri

Alpha-Tri is a deep neural network to score the intensity similarity using all possible fragment ions, resulting in the improvement in peptide detections.

Hardware

A GPU with CUDA support

Main Packages

Example on a local PC (win10, NVIDIA GPU 1060)

  1. Compile the modified DIA-NN:

    cd Alpha-Tri/DIA-NN_v1.7.12/mstoolkit
    make

    This will generate diann-alpha.exe in the same path.

  2. Make a workspace folder containing:

  3. Configure the operating environment by conda

    conda create -n alpha python=3.6 numpy=1.18 pandas=1.0 numba scikit-learn --yes
    conda activate alpha 
    conda install -c bioconda pyteomics python=3.6 --yes
    conda install tensorflow-gpu=1.11 keras=2.2.4 pytorch=1.1.0 cudatoolkit=9.0 -c pytorch --yes

    Of note, as Prosit is trained by tf1.11, advanced version of tf and CUDA may not be compatible.

  4. Run Prosit to predict the MS2 for each precursor in lib

    cd Alpha-Tri/Prosit
    python prosit.py --lib workspace_dir/lib.tsv

    This will append the predicted MS2 to each precursor and store the result to lib.pkl.

  5. Run DIA-NN:

    cd workspace
    ./diann-alpha.exe --f *.mzML --lib lib.tsv --out diann_out.tsv --threads 4 --qvalue 0.01
    or
    diann-alpha.exe --f *.mzML --lib lib.tsv --out diann_out.tsv --threads 4 --qvalue 0.01 

    Meanwhile, the modified DIA-NN will generate the scores file in workspace.

  6. Run Alpha-Tri:

    cd Alpha-Tri/Alpha-Tri
    python main.py -ws workspace_dir --tri (post-scoring only by Alpha-Tri)
    python main.py -ws workspace_dir --xic (post-scoring only by Alpha-XIC)
    python main.py -ws workspace_dir --tri --xic (post-scoring by Alpha-Tri & Alpha-XIC)

    Finally, we get the identification and quantitative result, alpha_out.tsv, in the workspace folder.

Example on Google Colab Pro (linux, NVIDIA GPU P100)

see alpha_tri_on_Colab.ipynb

Troubleshooting

1. AttributeError: 'str' object has no attribute 'decode'
2. TypeError: add_weight() got multiple values for argument 'name'

These may be raised by the version incompatibility of Keras in Prosit (see the discussions in keras-team/keras#14265 and keras-team/keras#13540). You may have to install the same version of Keras:

conda install tensorflow-gpu=1.11 keras=2.2.4 pytorch=1.1.0 cudatoolkit=9.0 -c pytorch --yes

About

Using the predicted spectral to calculate the intensity similarity and improve the identification of DIA data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published