This repository is for Convolutional neural networks combined with Runge–Kutta methods.
If you find RKCNN useful in your research, please consider citing:
@article{zhu2022convolutional,
title={Convolutional neural networks combined with Runge--Kutta methods},
author={Zhu, Mai and Chang, Bo and Fu, Chong},
journal={Neural Computing and Applications},
volume={35},
pages={1629–1643},
year={2023},
publisher={Springer},
doi="10.1007/s00521-022-07785-2"
}
An example to train an RKCNN-E-5_5_5 with growth rate 80 on CIFAR-10:
python3 train_cifar.py --out_features 10 --update1 0 --update2 0 --update3 0 --k1 80 --k2 80 --k3 80 --s1 5 --s2 5 --s3 5 --batch-size 32 --attention --bottleneck --data_augmentation --keep_prob 1
An example to train an RKCNN-I-5_5_5 with growth rate 80 on CIFAR-100:
python3 train_cifar.py --out_features 100 --replace --k1 80 --k2 80 --k3 80 --s1 5 --s2 5 --s3 5 --batch-size 32 --attention --bottleneck --data_augmentation --keep_prob 1
An example to train an RKCNN-R-5_5_5 with growth rate 80 on CIFAR-100:
python3 train_cifar.py --out_features 100 --k1 80 --k2 80 --k3 80 --s1 5 --s2 5 --s3 5 --batch-size 32 --attention --bottleneck --data_augmentation --keep_prob 1
This article and repository are used for image classification. If you are interested in semantic segmentation, you can refer to RKSeg and RKSeg+.