Skip to content

ZhuMai/RKCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RKCNN

This repository is for Convolutional neural networks combined with Runge–Kutta methods.

citation

If you find RKCNN useful in your research, please consider citing:

@article{zhu2022convolutional,
  title={Convolutional neural networks combined with Runge--Kutta methods},
  author={Zhu, Mai and Chang, Bo and Fu, Chong},
  journal={Neural Computing and Applications},
  volume={35},
  pages={1629–1643},
  year={2023},
  publisher={Springer},
  doi="10.1007/s00521-022-07785-2"
}

An example to train an RKCNN-E-5_5_5 with growth rate 80 on CIFAR-10:

python3 train_cifar.py --out_features 10 --update1 0 --update2 0 --update3 0 --k1 80 --k2 80 --k3 80 --s1 5 --s2 5 --s3 5 --batch-size 32 --attention --bottleneck --data_augmentation --keep_prob 1

An example to train an RKCNN-I-5_5_5 with growth rate 80 on CIFAR-100:

python3 train_cifar.py --out_features 100 --replace --k1 80 --k2 80 --k3 80 --s1 5 --s2 5 --s3 5 --batch-size 32 --attention --bottleneck --data_augmentation --keep_prob 1

An example to train an RKCNN-R-5_5_5 with growth rate 80 on CIFAR-100:

python3 train_cifar.py --out_features 100 --k1 80 --k2 80 --k3 80 --s1 5 --s2 5 --s3 5 --batch-size 32 --attention --bottleneck --data_augmentation --keep_prob 1

This article and repository are used for image classification. If you are interested in semantic segmentation, you can refer to RKSeg and RKSeg+.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages