Skip to content

aiotko/test

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 

Repository files navigation

Benchmarking on Edge Devices

Environment

General points

All benchmark are performed one-by-one with restarting kernel before running each cell.

Raspberry Pi 5

  1. Raspberry Pi OS Lite (64-bit).

  2. Python 3.11.

  3. Original source code and packages (poetry).

  4. Active cooling.

Orange Pi 5B

  1. Ubuntu 22.04.

  2. Python 3.11.

  3. Original source code and packages (poetry).

  4. Active cooling.

Jetson Nano 4Gb

  1. Ubuntu 20.04 Q-engineering.

  2. Python 3.8.

  3. Preinstalled Pytoch 1.13 with CUDA support.

  4. One-time setup with the manually installed packages.

  5. Slightly modified source code to fit Python 3.8 syntax and Pytorch 1.13, stored in a dedicated folder:

    • scaled_dot_product_attention is implemented in place;
    • minor syntax changes.

SuperPoint

descriptor_dim = 256, num_keypoints = 512, num_iterations = 10.

256x256

Model Raspberry Pi 5
SuperPoint 4954
SuperPointONNX 296
superpoint.onnx 147
superpoint_I256_D256_K512.onnx 153

1024x1024

Model Raspberry Pi 5
SuperPoint 5107
SuperPointONNX 4969
superpoint.onnx 2860

LightGlue

descriptor_dim = 256, num_keypoints = 512, num_iterations = 10.

Model Raspberry Pi 5
LightGlueONNX 766
superpoint_lightglue_fullgraph.onnx 516
superpoint_lightglue_fullgraph_I256_D256_K512.onnx.onnx 494

Detectors

Benchmark is performed on real images, num_iterations = 10.

Model Raspberry Pi 5
LightGlueDetector 11223
LightGlueORTDetector 15144
LightGlueORTDetector, 512 keypoints 7017

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published