All benchmark are performed one-by-one with restarting kernel before running each cell.
-
Raspberry Pi OS Lite (64-bit).
-
Python 3.11.
-
Original source code and packages (poetry).
-
Active cooling.
-
Ubuntu 22.04.
-
Python 3.11.
-
Original source code and packages (poetry).
-
Active cooling.
-
Ubuntu 20.04 Q-engineering.
-
Python 3.8.
-
Preinstalled Pytoch 1.13 with CUDA support.
-
One-time setup with the manually installed packages.
-
Slightly modified source code to fit Python 3.8 syntax and Pytorch 1.13, stored in a dedicated folder:
- scaled_dot_product_attention is implemented in place;
- minor syntax changes.
descriptor_dim = 256, num_keypoints = 512, num_iterations = 10.
Model | Raspberry Pi 5 |
---|---|
SuperPoint | 4954 |
SuperPointONNX | 296 |
superpoint.onnx | 147 |
superpoint_I256_D256_K512.onnx | 153 |
Model | Raspberry Pi 5 |
---|---|
SuperPoint | 5107 |
SuperPointONNX | 4969 |
superpoint.onnx | 2860 |
descriptor_dim = 256, num_keypoints = 512, num_iterations = 10.
Model | Raspberry Pi 5 |
---|---|
LightGlueONNX | 766 |
superpoint_lightglue_fullgraph.onnx | 516 |
superpoint_lightglue_fullgraph_I256_D256_K512.onnx.onnx | 494 |
Benchmark is performed on real images, num_iterations = 10.
Model | Raspberry Pi 5 |
---|---|
LightGlueDetector | 11223 |
LightGlueORTDetector | 15144 |
LightGlueORTDetector, 512 keypoints | 7017 |