Skip to content

Probabilistic Point Clouds - Code for simulation, training and evaluation of 3D object detection

License

Notifications You must be signed in to change notification settings

bhavyagoyal/ppc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Probabilistic Point Clouds from Single-Photon LiDARs for Robust 3D Inference

Under Review
PDF   Project

teaser

University of Wisconsin-Madison

Abstract

LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various 3D scene understanding tasks. Modern LiDARs face key challenges in various real-world scenarios such as long-distance or low-albedo objects, producing sparse or erroneous point clouds. These errors, which are rooted in the noisy raw LiDAR measurements, get propagated to downstream perception models, resulting in potentially severe loss of accuracy. This is because conventional 3D processing pipelines used to construct point clouds from raw LiDAR measurements do not retain the uncertainty information available in the raw sensor data. We propose a novel 3D scene representation called Probabilistic Point Clouds (PPC) where each point is augmented with a probability attribute that encapsulates the measurement uncertainty (confidence) in raw data. We further introduce inference approaches that leverage PPC for robust 3D object detection; these methods are versatile and can be used as computationally lightweight drop-in modules in 3D inference pipelines. We demonstrate, via both simulations and real captures, that PPC-based 3D inference methods outperform several baselines with LiDAR as well as camera-LiDAR fusion models, across challenging indoor and outdoor scenarios involving small, distant, and low-albedo objects, as well as strong ambient light.

Code Structure

.                                  # MMdetection3d Code
.
.
├── tools/ppc_simulation/          # Code for Probabilistic Point Cloud Simulation
└── README.md

Requirements/Installation

  • Follow the Installation steps for mmdetection3d framework.
  • matlab is required for PPC simulation.

Probabilistic Point Cloud (PPC) Simulation

  • Follow the original dataset instructions to prepare clean point cloud dataset.
  • Use ppc_simulate.sh to simulate 3D temporal waveforms.
cd tools/ppc_simulation
./ppc_simulate.sh 0 10
  • Use gen_points.sh to create probabilistic point clouds from the 3D waveforms.
./gen_points.sh 0 10
  • Use create_pkl.py to create label files for the whole dataset. It also creates a copy of clean point clouds to create ppc with probability 1.
python create_pkl.py

Edit the dataset field in the scripts to simulate for KITTI dataset. Increase 10 to the size of the dataset to simulate all scenes.

Training/Evaluating PPC models

  • Train PPC model using ppc_train.sh script. Uncomment lines in the script to train all PPC models and baselines.
./ppc_train.sh
  • Evaluate PPC model using ppc_test.sh script.
./ppc_test.sh

Results/Models

SUN RGB-D

Method AP@25 Download
Clean 0.1 0.05 0.02 0.01
Matched Filtering 51.34 42.43 38.77 16.95 11.34 model | log
Thresholding 57.11 51.27 46.44 29.58 16.47 model | log
PPC 58.61 54.29 52.46 38.49 29.42 model | log

KITTI

Pedestrian (3 class model)
Method mAP Download
Clean 0.05 0.02 0.01 0.005
Matched Filtering 60.11 55.76 50.03 47.06 37.01 model | log
Thresholding 58.63 57.72 54.80 49.23 38.62 model | log
PPC 60.62 59.12 59.04 55.39 49.51 model | log

Model weights will be updated soon.

English | 简体中文

Introduction

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.8+.

demo image

Major features
  • Support multi-modality/single-modality detectors out of box

    It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.

  • Support indoor/outdoor 3D detection out of box

    It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support nuImages dataset.

  • Natural integration with 2D detection

    All the about 300+ models, methods of 40+ papers, and modules supported in MMDetection can be trained or used in this codebase.

  • High efficiency

    It trains faster than other codebases. The main results are as below. Details can be found in benchmark.md. We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by .

    Methods MMDetection3D OpenPCDet votenet Det3D
    VoteNet 358 77
    PointPillars-car 141 140
    PointPillars-3class 107 44
    SECOND 40 30
    Part-A2 17 14

Like MMDetection and MMCV, MMDetection3D can also be used as a library to support different projects on top of it.

What's New

Highlight

In version 1.4, MMDetecion3D refactors the Waymo dataset and accelerates the preprocessing, training/testing setup, and evaluation of Waymo dataset. We also extends the support for camera-based, such as Monocular and BEV, 3D object detection models on Waymo. A detailed description of the Waymo data information is provided here.

Besides, in version 1.4, MMDetection3D provides Waymo-mini to help community users get started with Waymo and use it for quick iterative development.

v1.4.0 was released in 8/1/2024:

  • Support the training of DSVT in projects
  • Support Nerf-Det in projects
  • Refactor Waymo dataset

v1.3.0 was released in 18/10/2023:

  • Support CENet in projects
  • Enhance demos with new 3D inferencers

v1.2.0 was released in 4/7/2023

  • Support New Config Type in mmdet3d/configs
  • Support the inference of DSVT in projects
  • Support downloading datasets from OpenDataLab using mim

v1.1.1 was released in 30/5/2023:

  • Support TPVFormer in projects
  • Support the training of BEVFusion in projects
  • Support lidar-based 3D semantic segmentation benchmark

Installation

Please refer to Installation for installation instructions.

Getting Started

For detailed user guides and advanced guides, please refer to our documentation:

User Guides
Advanced Guides

Overview of Benchmark and Model Zoo

Results and models are available in the model zoo.

Components
Backbones Heads Features
Architectures
LiDAR-based 3D Object Detection Camera-based 3D Object Detection Multi-modal 3D Object Detection 3D Semantic Segmentation
  • Outdoor
  • Indoor
  • Outdoor
  • Indoor
  • Outdoor
  • Indoor
  • Outdoor
  • Indoor
  • ResNet VoVNet Swin-T PointNet++ SECOND DGCNN RegNetX DLA MinkResNet Cylinder3D MinkUNet
    SECOND
    PointPillars
    FreeAnchor
    VoteNet
    H3DNet
    3DSSD
    Part-A2
    MVXNet
    CenterPoint
    SSN
    ImVoteNet
    FCOS3D
    PointNet++
    Group-Free-3D
    ImVoxelNet
    PAConv
    DGCNN
    SMOKE
    PGD
    MonoFlex
    SA-SSD
    FCAF3D
    PV-RCNN
    Cylinder3D
    MinkUNet
    SPVCNN
    BEVFusion
    CenterFormer
    TR3D
    DETR3D
    PETR
    TPVFormer

    Note: All the about 500+ models, methods of 90+ papers in 2D detection supported by MMDetection can be trained or used in this codebase.

    FAQ

    Please refer to FAQ for frequently asked questions.

    Contributing

    We appreciate all contributions to improve MMDetection3D. Please refer to CONTRIBUTING.md for the contributing guideline.

    Acknowledgement

    MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

    Citation

    If you find this project useful in your research, please consider cite:

    @misc{mmdet3d2020,
        title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
        author={MMDetection3D Contributors},
        howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
        year={2020}
    }

    License

    This project is released under the Apache 2.0 license.

    Projects in OpenMMLab

    • MMEngine: OpenMMLab foundational library for training deep learning models.
    • MMCV: OpenMMLab foundational library for computer vision.
    • MMEval: A unified evaluation library for multiple machine learning libraries.
    • MIM: MIM installs OpenMMLab packages.
    • MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
    • MMDetection: OpenMMLab detection toolbox and benchmark.
    • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
    • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
    • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
    • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
    • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
    • MMPose: OpenMMLab pose estimation toolbox and benchmark.
    • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
    • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
    • MMRazor: OpenMMLab model compression toolbox and benchmark.
    • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
    • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
    • MMTracking: OpenMMLab video perception toolbox and benchmark.
    • MMFlow: OpenMMLab optical flow toolbox and benchmark.
    • MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
    • MMGeneration: OpenMMLab image and video generative models toolbox.
    • MMDeploy: OpenMMLab model deployment framework.

    About

    Probabilistic Point Clouds - Code for simulation, training and evaluation of 3D object detection

    Resources

    License

    Code of conduct

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages