Skip to content

Official implementation of the WACV 2025 ( Oral ) paper. RT-DETRv3: Real-time End-to-End Object Detection with Hierarchical Dense Positive Supervision.

License

Notifications You must be signed in to change notification settings

clxia12/RT-DETRv3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

English | 简体中文

RT-DETRv3: Real-time End-to-End Object Detection with Hierarchical Dense Positive Supervision

🔥🔥[WACV 2025 Oral] The official implementation of the paper "RT-DETRv3: Real-time End-to-End Object Detection with Hierarchical Dense Positive Supervision".
[arXiv] image

Model Zoo on COCO

Model Epoch Backbone Input shape $AP^{val}$ $AP^{val}_{50}$ Params(M) FLOPs(G) T4 TensorRT FP16(FPS) Weight Config Log
RT-DETRv3-R18 6x ResNet-18 640 48.1 66.2 20 60 217 baidu 网盘 google drive config
RT-DETRv3-R34 6x ResNet-34 640 49.9 67.7 31 92 161 baidu 网盘 google drive config
RT-DETRv3-R50 6x ResNet-50 640 53.4 71.7 42 136 108 baidu 网盘 google drive config
RT-DETRv3-R101 6x ResNet-101 640 54.6 73.1 76 259 74 config

Notes:

  • RT-DETRv3 uses 4 GPUs for training.
  • RT-DETRv3 was trained on COCO train2017 and evaluated on val2017.

Model Zoo on LVIS

Model Epoch Backbone Input shape AP $AP_{r}$ $AP_{c}$ $AP_{f}$ Weight Config Log
RT-DETRv3-R18 6x ResNet-18 640 26.5 12.5 24.3 35.2 config
RT-DETRv3-R50 6x ResNet-50 640 33.9 20.2 32.5 41.5 config

Quick start

Install requirements
pip install -r requirements.txt
Compile (optional)
cd ./ppdet/modeling/transformers/ext_op/

python setup_ms_deformable_attn_op.py install

See details

Data preparation
  • Download and extract COCO 2017 train and val images.
path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images
Training & Evaluation & Testing
  • Training on a Single GPU:
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/rtdetrv3/rtdetrv3_r18vd_6x_coco.yml --eval
  • Training on Multiple GPUs:
# training on multi-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rtdetrv3/rtdetrv3_r18vd_6x_coco.yml --fleet --eval
  • Evaluation:
python tools/eval.py -c configs/rtdetrv3/rtdetrv3_r18vd_6x_coco.yml \
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetrv3_r18vd_6x_coco.pdparams
  • Inference:
python tools/infer.py -c configs/rtdetrv3/rtdetrv3_r18vd_6x_coco.yml \
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetrv3_r18vd_6x_coco.pdparams \
              --infer_img=./demo/000000570688.jpg

Deploy

1. Export model
python tools/export_model.py -c configs/rtdetrv3/rtdetrv3_r18vd_6x_coco.yml \
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetrv3_r18vd_6x_coco.pdparams trt=True \
              --output_dir=output_inference
2. Convert to ONNX
pip install onnx==1.13.0
pip install paddle2onnx==1.0.5
  • Convert:
paddle2onnx --model_dir=./output_inference/rtdetrv3_r18vd_6x_coco/ \
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 16 \
            --save_file rtdetrv3_r18vd_6x_coco.onnx
3. Convert to TensorRT
  • TensorRT version >= 8.5.1
  • Inference can refer to Bennchmark
trtexec --onnx=./rtdetrv3_r18vd_6x_coco.onnx \
        --workspace=4096 \
        --shapes=image:1x3x640x640 \
        --saveEngine=rtdetrv3_r18vd_6x_coco.trt \
        --avgRuns=100 \
        --fp16

Citation

If you find RT-DETRv3 useful in your research, please consider giving a star ⭐ and citing:

@article{wang2024rt,
  title={RT-DETRv3: Real-time End-to-End Object Detection with Hierarchical Dense Positive Supervision},
  author={Wang, Shuo and Xia, Chunlong and Lv, Feng and Shi, Yifeng},
  journal={arXiv preprint arXiv:2409.08475},
  year={2024}
}

About

Official implementation of the WACV 2025 ( Oral ) paper. RT-DETRv3: Real-time End-to-End Object Detection with Hierarchical Dense Positive Supervision.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published