Skip to content

danielenricocahall/pysqlscribe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

Supported Versions

This is pysqlscribe, the Python library intended to make building SQL queries in your code a bit easier!

Motivation

Other query building libraries, such as pypika are fantastic but not actively maintained. Some ORM libraries such as sqlalchemy offer similar (and awesome) capabilities using the core API, but if you're not already using the library in your application, it's a bit of a large dependency to introduce for the purposes of query building.

API

pysqlscribe currently offers several APIs for building queries.

Query

A Query object can be constructed using the QueryRegistry's get_builder if you supply a valid dialect (e.g; "mysql", "postgres", "oracle"). For example, "mysql" would be:

from pysqlscribe.query import QueryRegistry

query_builder = QueryRegistry.get_builder("mysql")
query = query_builder.select("test_column", "another_test_column").from_("test_table").build()

Alternatively, you can create the corresponding Query class associated with the dialect directly:

from pysqlscribe.query import MySQLQuery

query_builder = MySQLQuery()
query = query_builder.select("test_column", "another_test_column").from_("test_table").build()

In both cases, the output is:

SELECT `test_column`,`another_test_column` FROM `test_table`

Furthermore, if there are any dialects that we currently don't support, you can create your own by subclassing Query and registering it with the QueryRegistry:

from pysqlscribe.query import QueryRegistry, Query


@QueryRegistry.register("custom")
class CustomQuery(Query):
    ...

Table

An alternative method for building queries is through the Table object:

from pysqlscribe.table import MySQLTable

table = MySQLTable("test_table", "test_column", "another_test_column")
query = table.select("test_column").build()

Output:

SELECT `test_column` FROM `test_table`

A schema for the table can also be provided as a keyword argument, after the columns:

from pysqlscribe.table import MySQLTable

table = MySQLTable("test_table", "test_column", "another_test_column", schema="test_schema")
query = table.select("test_column").build()

Output:

SELECT `test_column` FROM `test_schema.test_table`

Table also offers a create method in the event you've added a new dialect which doesn't have an associated Table implementation, or if you need to change it for different environments (e.g; sqlite for local development, mysql/postgres/oracle/etc. for deployment):

from pysqlscribe.table import Table

new_dialect_table_class = Table.create(
    "new-dialect")  # assuming you've registered "new-dialect" with the `QueryRegistry`
table = new_dialect_table_class("test_table", "test_column", "another_test_column")

You can overwrite the original columns supplied to a Table as well, which will delete the old attributes and set new ones:

from pysqlscribe.table import MySQLTable

table = MySQLTable("test_table", "test_column", "another_test_column")
table.test_column  # valid
table.fields = ['new_test_column']
table.select("new_test_column")
table.new_test_column  # now valid - but `table.test_column` is not anymore

Additionally, you can reference the Column attributes Table object when constructing queries. For example, in a WHERE clause:

from pysqlscribe.table import PostgresTable

table = PostgresTable("employee", "first_name", "last_name", "salary", "location")
table.select("first_name", "last_name", "location").where(table.salary > 1000).build()

Output:

SELECT "first_name","last_name","location" FROM "employee" WHERE salary > 1000

and in a JOIN:

from pysqlscribe.table import PostgresTable

employee_table = PostgresTable(
        "employee", "first_name", "last_name", "dept", "payroll_id"
    )
payroll_table = PostgresTable("payroll", "id", "salary", "category")
query = (
    employee_table.select(
        employee_table.first_name, employee_table.last_name, employee_table.dept
    )
    .join(payroll_table, "inner", payroll_table.id == employee_table.payroll_id)
    .build()
)

Output:

SELECT "first_name","last_name","dept" FROM "employee" INNER JOIN "payroll" ON payroll.id = employee.payroll_id

Schema

For associating multiple Tables with a single schema, you can use the Schema:

from pysqlscribe.schema import Schema

schema = Schema("test_schema", tables=["test_table", "another_test_table"], dialect="postgres")
schema.tables  # a list of two `Table` objects

This is functionally equivalent to:

from pysqlscribe.table import PostgresTable

table = PostgresTable("test_table", schema="test_schema")
another_table = PostgresTable("another_test_table", schema="test_schema")

Instead of supplying a dialect directly to Schema, you can also set the environment variable PYSQLSCRIBE_BUILDER_DIALECT:

export PYSQLSCRIBE_BUILDER_DIALECT = 'postgres'
from pysqlscribe.schema import Schema

schema = Schema("test_schema", tables=["test_table", "another_test_table"])
schema.tables  # a list of two `PostgresTable` objects

Alternatively, if you already have existing Table objects you want to associate with the schema, you can supply them directly (in this case, dialect is not needed):

from pysqlscribe.schema import Schema
from pysqlscribe.table import PostgresTable

table = PostgresTable("test_table")
another_table = PostgresTable("another_test_table")
schema = Schema("test_schema", [table, another_table])

Schema also has each table set as an attribute, so in the example above, you can do the following:

schema.test_table # will return the supplied table object with the name `"test_table"`

Arithmetic Operations

Arithmetic operations can be performed on columns, both on Column objects and scalar values:

from pysqlscribe.table import MySQLTable

table = MySQLTable("employees", "salary", "bonus", "lti")
query = table.select(
    (table.salary + table.bonus + table.lti).as_("total_compensation")
).build()

Output:

SELECT employees.salary + employees.bonus + employees.lti AS total_compensation FROM `employees` 
from pysqlscribe.table import MySQLTable

table = MySQLTable("employees", "salary", "bonus", "lti")
query = table.select((table.salary * 0.75).as_("salary_after_taxes")).build()

Output:

SELECT employees.salary * 0.75 AS salary_after_taxes FROM `employees`

Functions

For computing aggregations (e.g; MAX, AVG, COUNT) or performing scalar operations (e.g; ABS, SQRT, UPPER), we have functions available in the aggregate_functions and scalar_functions modules which will accept both strings or columns:

from pysqlscribe.table import PostgresTable
from pysqlscribe.aggregate_functions import max_
from pysqlscribe.scalar_functions import upper
table = PostgresTable(
    "employee", "first_name", "last_name", "store_location", "salary"
)
query = (
    table.select(upper(table.store_location), max_(table.salary))
    .group_by(table.store_location)
    .build()
)
# Equivalently:
query_with_strs = (
    table.select(upper("store_location"), max_("salary"))
    .group_by("store_location")
    .build()
)

Output:

SELECT UPPER(store_location),MAX(salary) FROM "employee" GROUP BY "store_location"

Combining Queries

You can combine queries using the union, intersect, and except methods, providing either another Query object or a string:

from pysqlscribe.query import QueryRegistry
query_builder = QueryRegistry.get_builder("mysql")
another_query_builder = QueryRegistry.get_builder("mysql")
query = (
    query_builder.select("test_column", "another_test_column")
    .from_("test_table")
    .union(
        another_query_builder.select("test_column", "another_test_column")
        .from_("another_test_table")
    )
    .build()
)

Output:

SELECT `test_column`,`another_test_column` FROM `test_table` UNION SELECT `test_column`,`another_test_column` FROM `another_test_table`

to perform all for each combination operation, you supply the argument all_:

from pysqlscribe.query import QueryRegistry
query_builder = QueryRegistry.get_builder("mysql")
another_query_builder = QueryRegistry.get_builder("mysql")
query = (
    query_builder.select("test_column", "another_test_column")
    .from_("test_table")
    .union(
        another_query_builder.select("test_column", "another_test_column")
        .from_("another_test_table"), all_=True
    )
    .build()
)

Output:

SELECT `test_column`,`another_test_column` FROM `test_table` UNION ALL SELECT `test_column`,`another_test_column` FROM `another_test_table`

Aliases

For aliasing tables and columns, you can use the as_ method on the Table or Column objects:

from pysqlscribe.table import PostgresTable

employee_table = PostgresTable(
    "employee", "first_name", "last_name", "dept", "payroll_id"
)
query = (
    employee_table.as_("e").select(employee_table.first_name.as_("name")).build()
)

Output:

SELECT "first_name" AS name FROM "employee" AS e

Escaping Identifiers

By default, all identifiers are escaped using the corresponding dialect's escape character, as can be seen in various examples. This is done to prevent SQL injection attacks and to ensure we handle different column name variations (e.g; a column with a space in the name, a column name which coincides with a keyword). Admittedly, this also makes the queries less aesthetic. If you want to disable this behavior, you can use the disable_escape_identifiers method:

from pysqlscribe.query import QueryRegistry
query_builder = QueryRegistry.get_builder("mysql").disable_escape_identifiers()
query = (
    query_builder.select("test_column", "another_test_column")
    .from_("test_table")
    .where("test_column = 1", "another_test_column > 2")
    .build()
)

Output:

SELECT test_column,another_test_column FROM test_table WHERE test_column = 1 AND another_test_column > 2 # look ma, no backticks!

If you want to switch preferences, there's a corresponding enable_escape_identifiers method:

from pysqlscribe.query import QueryRegistry

query_builder = QueryRegistry.get_builder("mysql").disable_escape_identifiers()
query = (
    query_builder.select("test_column", "another_test_column")
    .enable_escape_identifiers()
    .from_("test_table")
    .where("test_column = 1", "another_test_column > 2")
    .build()
)

Output:

SELECT test_column,another_test_column FROM `test_table` WHERE test_column = 1 AND another_test_column > 2 # note the table name is escaped while the columns are not

Alternatively, if you don't want to change existing code or you have several Query or Table objects you want to apply this setting to (and don't plan on swapping settings), you can set the environment variable PYSQLSCRIBE_ESCAPE_IDENTIFIERS to "False" or "0".

Supported Dialects

This is anticipated to grow, also there are certainly operations that are missing within dialects.

  • MySQL
  • Oracle
  • Postgres
  • Sqlite

TODO

  • Add more dialects
  • Support OFFSET for Oracle and SQLServer
  • Support subqueries
  • Improved injection mitigation
  • Support more aggregate and scalar functions
  • Enhance how where clauses are handled

💡 Interested in contributing? Check out the Local Development & Contributions Guide.

About

A SQL Query Builder in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages