Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Optimization] Use scipy's eigs instead of numpy in lap_pe #5855

Merged
merged 8 commits into from
Aug 24, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 20 additions & 7 deletions python/dgl/transforms/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -3672,13 +3672,26 @@ def lap_pe(g, k, padding=False, return_eigval=False):
L = sparse.eye(g.num_nodes()) - N * A * N

# select eigenvectors with smaller eigenvalues O(n + klogk)
EigVal, EigVec = np.linalg.eig(L.toarray())
max_freqs = min(n - 1, k)
kpartition_indices = np.argpartition(EigVal, max_freqs)[: max_freqs + 1]
topk_eigvals = EigVal[kpartition_indices]
topk_indices = kpartition_indices[topk_eigvals.argsort()][1:]
topk_EigVec = EigVec[:, topk_indices]
eigvals = F.tensor(EigVal[topk_indices], dtype=F.float32)
if k + 1 < n - 1:
# Use scipy if k + 1 < n - 1 for memory efficiency.
EigVal, EigVec = scipy.sparse.linalg.eigs(
L, k=k + 1, which="SR", tol=1e-2
)
topk_indices = EigVal.argsort()[1:]
# Since scipy may return complex value, to avoid crashing in NN code,
# convert them to real number.
topk_eigvals = EigVal[topk_indices].real
topk_EigVec = EigVec[:, topk_indices].real
else:
# Fallback to numpy since scipy.sparse do not support this case.
EigVal, EigVec = np.linalg.eig(L.toarray())
max_freqs = min(n - 1, k)
kpartition_indices = np.argpartition(EigVal, max_freqs)[: max_freqs + 1]
topk_eigvals = EigVal[kpartition_indices]
topk_indices = kpartition_indices[topk_eigvals.argsort()][1:]
topk_EigVec = EigVec[:, topk_indices]
topk_EigVal = EigVal[topk_indices]
eigvals = F.tensor(topk_EigVal, dtype=F.float32)

# get random flip signs
rand_sign = 2 * (np.random.rand(max_freqs) > 0.5) - 1.0
Expand Down