Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Sparse] Add matrix slicing python API #6184

Merged
merged 19 commits into from
Aug 30, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 99 additions & 0 deletions python/dgl/sparse/sparse_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -479,6 +479,105 @@ def is_diag(self):
"""Returns whether the sparse matrix is a diagonal matrix."""
return self.c_sparse_matrix.is_diag()

def index_select(self, dim: int, index: torch.Tensor):
"""Returns a sub-matrix selected according to the given index.

Parameters
----------
dim : int
The dim to select from matrix, should be 0 or 1. `dim = 0` for
rowwise selection and `dim = 1` for columnwise selection.
index : tensor.Tensor
The selection index indicates which IDs from the `dim` should
be chosen from the matrix.
Note that duplicated ids are allowed.

The function does not support autograd.

Returns
-------
SparseMatrix
The sub-matrix which contains selected rows or columns.

Examples
--------

>>> indices = torch.tensor([0, 1, 1, 2, 3, 4], [0, 2, 4, 3, 5, 0]])
>>> val = torch.tensor([0, 1, 2, 3, 4, 5])
>>> A = dglsp.spmatrix(indices, val)

Case 1: Select rows by IDs.

>>> row_ids = torch.tensor([0, 1, 4])
>>> A.index_select(0, row_ids)
SparseMatrix(indices=tensor([[0, 1, 1, 2],
[0, 2, 4, 0]]),
values=tensor([0, 1, 2, 5]),
shape=(3, 6), nnz=4)

Case 2: Select columns by IDs.

>>> column_ids = torch.tensor([0, 4, 5])
>>> A.index_select(1, column_ids)
SparseMatrix(indices=tensor([[0, 4, 1, 3],
[0, 0, 1, 2]]),
values=tensor([0, 5, 2, 4]),
shape=(5, 3), nnz=4)
"""
if dim not in (0, 1):
raise ValueError("The selection dimension should be 0 or 1.")
if isinstance(index, torch.Tensor):
raise NotImplementedError
raise TypeError(f"{type(index).__name__} is unsupported input type.")

def range_select(self, dim: int, index: slice):
"""Returns a sub-matrix selected according to the given range index.

Parameters
----------
dim : int
The dim to select from matrix, should be 0 or 1. `dim = 0` for
rowwise selection and `dim = 1` for columnwise selection.
index : slice
The selection slice indicates ID index from the `dim` should
be chosen from the matrix.

The function does not support autograd.

Returns
-------
SparseMatrix
The sub-matrix which contains selected rows or columns.

Examples
--------

>>> indices = torch.tensor([0, 1, 1, 2, 3, 4], [0, 2, 4, 3, 5, 0]])
>>> val = torch.tensor([0, 1, 2, 3, 4, 5])
>>> A = dglsp.spmatrix(indices, val)

Case 1: Select rows with given slice object.

>>> A.range_select(0, slice(1, 3))
SparseMatrix(indices=tensor([[0, 0, 1],
[2, 4, 3]]),
values=tensor([1, 2, 3]),
shape=(2, 6), nnz=3)

Case 2: Select columns with given slice object.

>>> A.range_select(1, slice(3, 6))
SparseMatrix(indices=tensor([[2, 1, 3],
[0, 1, 2]]),
values=tensor([3, 2, 4]),
shape=(5, 3), nnz=3)
"""
if dim not in (0, 1):
raise ValueError("The selection dimension should be 0 or 1.")
if isinstance(index, slice):
raise NotImplementedError
raise TypeError(f"{type(index).__name__} is unsupported input type.")


def spmatrix(
indices: torch.Tensor,
Expand Down