Skip to content

A Framework for Underwater Image Processing in Deep Learning.

Notifications You must be signed in to change notification settings

fansuregrin/UIP

Repository files navigation

Underwater Image Processing (UIP)

Models

ImgEnhanceModel ImgEnhanceModel2 ImgEnhanceModel3 ImgEnhanceModel4 ImgEnhanceModel5
ImgEnhanceModel6 ImgEnhanceModel7 ImgEnhanceModel8 ImgEnhanceModel9 AquaticMamba

Networks

UNet FCN EGE_UNet UGAN WaterNet
RA ERD VGUNet MimoSwinTUNet Aquatic Mamba

Citations

If you use this repository, please cite the following papers:

@InProceedings{raune-net,
    author="Peng, Wangzhen
        and Zhou, Chenghao
        and Hu, Runze
        and Cao, Jingchao
        and Liu, Yutao",
    editor="Zhai, Guangtao
        and Zhou, Jun
        and Ye, Long
        and Yang, Hua
        and An, Ping
        and Yang, Xiaokang",
    title="RAUNE-Net: A Residual and Attention-Driven Underwater Image Enhancement Method",
    booktitle="Digital Multimedia Communications",
    year="2024",
    publisher="Springer Nature Singapore",
    address="Singapore",
    pages="15--27",
    isbn="978-981-97-3623-2"
}

@article{erd,
    author={Cao, Jingchao and Peng, Wangzhen and Liu, Yutao and Dong, Junyu and Callet, Patrick Le and Kwong, Sam},
    journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
    title={ERD: Encoder-Residual-Decoder Neural Network for Underwater Image Enhancement}, 
    year={2025},
    volume={},
    number={},
    pages={1-1},
    keywords={Image color analysis;Feature extraction;Transformers;Image quality;Training;Imaging;Image restoration;Image enhancement;Image edge detection;Degradation;Underwater image enhancement;Deep neural network;Residual learning;Attention;Fourier transform},
    doi={10.1109/TCSVT.2025.3556203}
}

About

A Framework for Underwater Image Processing in Deep Learning.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published