Skip to content
/ SLA Public

Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Notifications You must be signed in to change notification settings

hankook/SLA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

bc5d9cd · Nov 28, 2020

History

9 Commits
Jun 29, 2020
Jun 27, 2020
Jun 27, 2020
Nov 28, 2020
Jun 27, 2020
Jul 13, 2020
Jun 27, 2020
Jun 29, 2020
Jun 29, 2020
Jun 29, 2020
Jun 27, 2020

Repository files navigation

Self-supervised Label Augmentation via Input Transformations

Install dependencies

conda create -n SLA python=3.7
conda activate SLA
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
conda install ignite -c pytorch
pip install tensorboard

We tested our code on the following versions:

  • pytorch==1.5.1
  • torchvision=0.6.1
  • ignite==0.4.0.post1

Training

We here provide a training script for cifar10.

python train.py \
    --dataset cifar10 --datadir data/ --batchsize 128 --num-iterations 80000 --val-freq 1000 \
    --model cresnet32 \
    --mode sla --aug rotation

For other training objectives, replace the --mode option with baseline, da, mt, or sla+sd. For other augmentations, replace the --aug option with the function names in augmentations.py.

Large-scale datasets. We empirically found that summation (instead of average) of losses across self-supervised transformations could provide an accuracy gain in the large-scale datasets such as ImageNet or iNaturalist. To this end, use the --with-large-loss option.

Evaluation

You can check the results in the log files stored in the logs/ directory (single_acc for SLA+SI or SLA+SD; agg_acc for SLA+AG). To re-evaluation, use test.py.

BibTeX

@inproceedings{lee2020_sla,
  title={Self-supervised label augmentation via input transformations},
  author={Lee, Hankook and Hwang, Sung Ju and Shin, Jinwoo},
  booktitle={International Conference on Machine Learning},
  pages={5714--5724},
  year={2020},
  organization={PMLR}
}}

About

Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages