This is the PyTorch implementation of the TSFCNet architecture for EEG-MI classification.
Dataset I: BCI Competition IV 2a Dataset
Dataset II: BCI Competition IV 2b Dataset
Dataset III: OpenBMI Dataset
A pytorch implementation for EEGNeX.
A pytorch implementation for ATCNet.
If you find this code useful to your research, please give credit to the following paper
@ARTICLE{zhi2023,
author={Zhi, Hongyi and Yu, Zhuliang and Yu, Tianyou and Gu, Zhenghui and Yang, Jian},
journal={IEEE Transactions on Neural Systems and Rehabilitation Engineering},
title={A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding},
year={2023},
volume={31},
pages={3988-3998}
}
Ravikiran Mane, Effie Chew, Karen Chua, Kai Keng Ang, Neethu Robinson, A.P. Vinod, Seong-Whan Lee, and Cuntai Guan, "FBCNet: An Efficient Multi-view Convolutional Neural Network for Brain-Computer Interface," arXiv preprint arXiv:2104.01233 (2021) https://arxiv.org/abs/2104.01233
We thank Ravikiran Mane et al. for their useful toolbox.