Skip to content

hongyizhi/TSFCNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TSFCNet

A Multi-Domain Convolutional Neural Network for EEG Motor Imagery Decoding

This is the PyTorch implementation of the TSFCNet architecture for EEG-MI classification.

TSFCNet: Architecture

structv2

TSFCNet: Results (Hold-out Scenario)

Dataset I: BCI Competition IV 2a Dataset
Dataset II: BCI Competition IV 2b Dataset
Dataset III: OpenBMI Dataset
image

image

image

Reproduced

A pytorch implementation for EEGNeX.

A pytorch implementation for ATCNet.

image

Citation

If you find this code useful to your research, please give credit to the following paper

@ARTICLE{zhi2023,
  author={Zhi, Hongyi and Yu, Zhuliang and Yu, Tianyou and Gu, Zhenghui and Yang, Jian},
  journal={IEEE Transactions on Neural Systems and Rehabilitation Engineering}, 
  title={A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding}, 
  year={2023},
  volume={31},
  pages={3988-3998}
}

References:

Ravikiran Mane, Effie Chew, Karen Chua, Kai Keng Ang, Neethu Robinson, A.P. Vinod, Seong-Whan Lee, and Cuntai Guan, "FBCNet: An Efficient Multi-view Convolutional Neural Network for Brain-Computer Interface," arXiv preprint arXiv:2104.01233 (2021) https://arxiv.org/abs/2104.01233

Acknowledgment

We thank Ravikiran Mane et al. for their useful toolbox.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages