Skip to content

jsnns/first-neural-network

Repository files navigation

From Wrong to Wright

My progress of understanding the math behind neural networks is shown below

This was try one — My attempt to hack it together and make it work failed utterly. This, hack-and-hope approach, works for simple software or aged technologies that you have lots of experience in. If you try it in a machine learning problem — you get [very] wrong predictions or in a more real-world case dead people and crashed cars.

bad

After a few short minutes of planning I got stellar results. The lesson here? Make absolute certain that your network works on paper before you spend six long hours trying to hack together a mental concept.

good

The code for the network is as follows—

Import Statments

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Load and Prepare the Data

data_path = 'Bike-Sharing-Dataset/hour.csv'
rides = pd.read_csv(data_path)

Dummy Variables

dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']
for each in dummy_fields:
    dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)
    rides = pd.concat([rides, dummies], axis=1)

fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 
                  'weekday', 'atemp', 'mnth', 'workingday', 'hr']
data = rides.drop(fields_to_drop, axis=1)
data.head()

Scaling Target Variables

quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed']
# Store scalings in a dictionary so we can convert back later
scaled_features = {}
for each in quant_features:
    mean, std = data[each].mean(), data[each].std()
    scaled_features[each] = [mean, std]
    data.loc[:, each] = (data[each] - mean)/std

Training and Validation Sets

# Save data for approximately the last 21 days 
test_data = data[-21*24:]

# Now remove the test data from the data set 
data = data[:-21*24]

# Separate the data into features and targets
target_fields = ['cnt', 'casual', 'registered']
features, targets = data.drop(target_fields, axis=1), data[target_fields]
test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields]
# Hold out the last 60 days or so of the remaining data as a validation set
train_features, train_targets = features[:-60*24], targets[:-60*24]
val_features, val_targets = features[-60*24:], targets[-60*24:]

The Neural Network Object

class NeuralNetwork(object):
    def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, 
                                       (self.input_nodes, self.hidden_nodes))

        self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, 
                                       (self.hidden_nodes, self.output_nodes))
        self.lr = learning_rate
        
        #### TODO: Set self.activation_function to your implemented sigmoid function ####
        #
        # Note: in Python, you can define a function with a lambda expression,
        # as shown below.
        self.activation_function = lambda x : 1 / (1 + np.exp(-x))  # Replace 0 with your sigmoid calculation.
        
        ### If the lambda code above is not something you're familiar with,
        # You can uncomment out the following three lines and put your 
        # implementation there instead.
        #
        #def sigmoid(x):
        #    return 0  # Replace 0 with your sigmoid calculation here
        #self.activation_function = sigmoid
                    
    
    def train(self, features, targets):
        ''' Train the network on batch of features and targets. 
        
            Arguments
            ---------
            
            features: 2D array, each row is one data record, each column is a feature
            targets: 1D array of target values
        
        '''
        n_records = features.shape[0]
        delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape)
        delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape)
        for X, y in zip(features, targets):
            #### Implement the forward pass here ####
            ### Forward pass ###
            # TODO: Hidden layer - Replace these values with your calculations.
            hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer
            hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer

            # TODO: Output layer - Replace these values with your calculations.
            final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
            final_outputs = final_inputs # signals from final output layer
            
            #### Implement the backward pass here ####
            ### Backward pass ###

            # TODO: Output error - Replace this value with your calculations.
            output_error = y - final_outputs # Output layer error is the difference between desired target and actual output.
            
            # TODO: Calculate the hidden layer's contribution to the error
            hidden_error = output_error * self.weights_hidden_to_output.T * (self.activation_function(hidden_inputs) * (1 - self.activation_function(hidden_inputs)))
            
            # TODO: Backpropagated error terms - Replace these values with your calculations.
            output_error_term = None
            hidden_error_term = None

            # Weight step (input to hidden)
            delta_weights_i_h += hidden_error * X[:, None]
            # Weight step (hidden to output)
            delta_weights_h_o += output_error * hidden_outputs[:, None]

        # TODO: Update the weights - Replace these values with your calculations.
        self.weights_hidden_to_output += self.lr * delta_weights_h_o
        self.weights_input_to_hidden += self.lr * delta_weights_i_h
 
    def run(self, features):
        ''' Run a forward pass through the network with input features 
        
            Arguments
            ---------
            features: 1D array of feature values
        '''
        
        #### Implement the forward pass here ####
        # TODO: Hidden layer - Replace these values with your calculations.
        hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer
        hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer

        # TODO: Output layer - Replace these values with your calculations.
        final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
        final_outputs = final_inputs # signals from final output layer
        
        return final_outputs

Mean Square Error Function

def MSE(y, Y):
    return np.mean((y-Y)**2)

Training The Network

import sys

### Set the hyperparameters here ###
iterations = 1500
learning_rate = 0.01
hidden_nodes = 4
output_nodes = 1

N_i = train_features.shape[1]
network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate)

losses = {'train':[], 'validation':[]}
for ii in range(iterations):
    # Go through a random batch of 128 records from the training data set
    batch = np.random.choice(train_features.index, size=128)
    X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt']
                             
    network.train(X, y)
    
    # Printing out the training progress
    train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values)
    val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values)
    sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \
                     + "% ... Training loss: " + str(train_loss)[:5] \
                     + " ... Validation loss: " + str(val_loss)[:5])
    sys.stdout.flush()
    
    losses['train'].append(train_loss)
    losses['validation'].append(val_loss)
plt.plot(losses['train'], label='Training loss')
plt.plot(losses['validation'], label='Validation loss')
plt.legend()
_ = plt.ylim()

Plot Predictions

fig, ax = plt.subplots(figsize=(8,4))

mean, std = scaled_features['cnt']
predictions = network.run(test_features).T*std + mean
ax.plot(predictions[0], label='Prediction')
ax.plot((test_targets['cnt']*std + mean).values, label='Data')
ax.set_xlim(right=len(predictions))
ax.legend()

dates = pd.to_datetime(rides.ix[test_data.index]['dteday'])
dates = dates.apply(lambda d: d.strftime('%b %d'))
ax.set_xticks(np.arange(len(dates))[12::24])
_ = ax.set_xticklabels(dates[12::24], rotation=45)

About

A bare-bones low-level implementation of a neural network. Udacity deep-learning project.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published