Skip to content

[3DV 2024] Official repo of "Synthesizing Physically Plausible Human Motions in 3D Scenes"

Notifications You must be signed in to change notification settings

liangpan99/InterScene

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Synthesizing Physically Plausible Human Motions in 3D Scenes

Liang Pan · Jingbo Wang · Buzhen Huang · Junyu Zhang · Haofan Wang · Xu Tang · Yangang Wang
Southeast University Shanghai AI Laboratory Xiaohongshu Inc.

3DV 2024

Paper PDF Project Page

We propose InterScene, a novel method that generates physically plausible long-term motion sequences in 3D indoor scenes. Our approach enables physics-based characters to exhibit natural interaction-involved behaviors, such as sitting down (gray), getting up (blue), and walking while avoiding obstacles (pink).

News

  • [2025-03-03] Update camera-ready paper and website.
  • [2023-11-09] Release code for training and evaluating the sit policy.
  • [2023-10-16] Paper got accepted by 3DV 2024.

Dependencies

Environment

To create the environment, follow the following instructions:

  1. We recommend to install all the requirements through Conda by
conda create -n rlgpu python=3.7
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
  1. Download IsaacGym Preview 4 from the official site and install it via pip.

Dataset

To prepare data for training/evaluating InterCon (sit & get-up policies), follow the following instructions:

  1. Download SMPL-X v1.1 from the official site. Put them in the body_models/smplx folder.

  2. Download SAMP motion dataset from the official site. Put them in the samp folder. Please download Motion Clips (.pkl), which contains the SMPL-X parameters.

  3. The file structure should look like this:

|-- InterScene
|-- body_models
    |-- smplx
        |-- SMPLX_FEMALE.npz
        |-- SMPLX_FEMALE.pkl
        |-- SMPLX_MALE.npz
        |-- ...
|-- samp
    |-- chair_mo_stageII.pkl
    |-- chair_mo001_stageII.pkl
    |-- chair_mo002_stageII.pkl
    |-- ...
  1. Run the following script to generate reference motion dataset:
python InterScene/data/dataset_samp_sit/generate_motion.py --samp_pkl_dir ./samp --smplx_dir ./body_models/smplx
  1. Run the following script to generate 3D object dataset:
python InterScene/data/dataset_samp_sit/generate_obj.py

Getting Started

InterCon (sit & get-up policies)

## training sit policy
python InterScene/run.py --task HumanoidLocationSit --cfg_env InterScene/data/cfg/humanoid_location_sit.yaml --cfg_train InterScene/data/cfg/train/rlg/amp_task_location_sit.yaml --motion_file InterScene/data/dataset_samp_sit/dataset_samp_sit.yaml --num_envs 4096 --headless

## evaluating sit policy
python InterScene/run.py --task HumanoidLocationSit --cfg_env InterScene/data/cfg/humanoid_location_sit.yaml --cfg_train InterScene/data/cfg/train/rlg/amp_task_location_sit.yaml --motion_file InterScene/data/dataset_samp_sit/dataset_samp_sit.yaml --num_envs 4096 --headless --checkpoint InterScene/data/models/policy_sit.pth --test

Citation

@inproceedings{pan2024synthesizing,
  title={Synthesizing physically plausible human motions in 3d scenes},
  author={Pan, Liang and Wang, Jingbo and Huang, Buzhen and Zhang, Junyu and Wang, Haofan and Tang, Xu and Wang, Yangang},
  booktitle={2024 International Conference on 3D Vision (3DV)},
  pages={1498--1507},
  year={2024},
  organization={IEEE}
}

References

This repository is built on the top of the following amazing codebases:

  • Main code framework is from: ASE
  • Some scripts are from: Pacer, HuMoR

Please follow the license of the above repositories for the usage of this project.

About

[3DV 2024] Official repo of "Synthesizing Physically Plausible Human Motions in 3D Scenes"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages