Skip to content

lxa9867/ImageFolder

Repository files navigation

Contents

Robust Latent Matters: Boosting Image Generation with Sampling Error Synthesis

arXivΒ  huggingface weightsΒ 

XQ-GANπŸš€: An Open-source Image Tokenization Framework for Autoregressive Generation

arXivΒ  huggingface weightsΒ 

ImageFolderπŸš€: Autoregressive Image Generation with Folded Tokens

project pageΒ  arXivΒ  huggingface weightsΒ 

Updates

  • (2025.03.13) RobustTok initial code released.
  • (2025.01.22) ImageFolder got accepted to ICLR 2025.
  • (2024.12.03) XQ-GAN initial code released. ImageFolder is compatible in XQ-GAN.
  • (2024.12.02) ImageFolder's code has been released officially at Adobe Research Repo.

Features

🚨🚨🚨 New (2025.03): We are supporting latent perturbation + pFID evaluation proposed in RobustTok! Refer to latent_perturbation.py.

⚠️⚠️⚠️ Important: You may want to add the perturbation after calculating vq and commit losses, i.e., making the perturbation only affect rec, percep and gan losses.

# Plug and play perturbation to improve your tokenizerβ€˜s latent robustness
import latent_perturbation as LP

# Dummy quantization implementation
class quantizer():
    def __init__():
        self.enc = Encoder()
        self.dec = Decoder()
        self.quant = Quantizer()
        self.codebook = self.quant.codebook
    def quantize(x):
        x = self.enc(x)
        x = self.quant(x)
        #-----------------------------#
        # This is all you need to add!
	# alpha: perturbation rate. beta: perturbation proportion. delta: perturbation strength.
        x = LP.add_perturb(x, z_channels=self.z_channels, codebook_norm = self.codebook_norm , codebook=self.codebook, alpha=0.5, beta=0.1, delta=100)
        #-----------------------------#
        x = self.dec(x)
        return x

Basic features of the highly flexible quantization framework

XQ-GAN is a highly flexible framework that supports the combination of several advanced quantization approaches, backbone architectures, and training recipes (semantic alignment, discriminators, and auxiliary losses). In addition, we also provide finetuning support with full, LORA, and frozen from pre-trained weights.

We implemented a hierarchical quantization approach, which first decides the product quantization (PQ) and then the residual quantization (RQ). The minimum unit of this design consists of vector quantization (VQ), lookup-free quantization (LFQ), and binary spherical quantization (BSQ). A vanilla VQ can be achieved in this framework by setting the product branch and residual depth to 1.

Model Zoo

We provide pre-trained tokenizers for image reconstruction on ImageNet, LAION-400M (natural image), and IMed361M (multimodal medical image) 256x256 resolution. V: Vector quantization. B: Binary Spherical Quantization. P: Product quantization. R: Residual quantization. MS: Multi-scale. LP: Latent Perturbation. The type is arranged as MS-{V,B}-{R}-{P}-LP.

Training Type Codebook Latent res. rFID pFID Link Config
ImageNet V 4096 16x16 0.91 6.98 Huggingface VQ-4096.yaml
ImageNet V 8192 16x16 0.81 7.91 Huggingface VQ-8192.yaml
ImageNet VP+LP 4096 16x16 1.02 2.28 Huggingface RobustTok.yaml
ImageNet VP2 4096 16x16 0.90 - Huggingface VP2-4096.yaml
ImageNet VP2 16384 16x16 0.64 - Huggingface VP2-16384.yaml
Training Type Codebook Latent res. rFID pFID Link Config
ImageNet MSBR10P2 4096 1x1->11x11 0.86 - Huggingface MSBR10P2-4096.yaml
ImageNet MSBR10P2 16384 1x1->11x11 0.78 - Huggingface MSBR10P2-16384.yaml
Training Type Codebook Latent res. rFID pFID Link Config
ImageNet MSVR10P2 4096 1x1->11x11 0.80 7.23 Huggingface MSVR10P2-4096.yaml
ImageNet MSVR10P2 8192 1x1->11x11 0.70 - Huggingface MSVR10P2-8192.yaml
ImageNet MSVR10P2 16384 1x1->11x11 0.67 - Huggingface MSVR10P2-16384.yaml
IMed MSVR10P2 4096 1x1->11x11 - - Huggingface MSVR10P2-4096.yaml
LAION MSVR10P2 4096 1x1->11x11 - - Huggingface MSVR10P2-4096.yaml

We provide a pre-trained generators for class-conditioned image generation using MSVR10P2 (ImgaeFolder's setting) and VP+Latent Perturb (LP) on ImageNet 256x256 resolution.

Generator Type Tokenizer Model Size gFID Link
VAR MSVR10P2 362M 2.60 Huggingface
RAR VP+LP 261M 1.83 Huggingface
RAR VP+LP 461M 1.60 Huggingface

Installation

Install all packages as

conda env create -f environment.yml

Dataset

We download the ImageNet2012 from the website and collect it as

ImageNet2012
β”œβ”€β”€ train
└── val

If you want to train or finetune on other datasets, collect them in the format that ImageFolder (pytorch's ImageFolder) can recognize.

Dataset
β”œβ”€β”€ train
β”‚   β”œβ”€β”€ Class1
β”‚   β”‚   β”œβ”€β”€ 1.png
β”‚   β”‚   └── 2.png
β”‚   β”œβ”€β”€ Class2
β”‚   β”‚   β”œβ”€β”€ 1.png
β”‚   β”‚   └── 2.png
β”œβ”€β”€ val

Training code for tokenizer

Please login to Wandb first using

wandb login

rFID will be automatically evaluated and reported on Wandb. The checkpoint with the best rFID on the val set will be saved. We provide basic configurations in the "configs" folder.

Warning❗️: You may want to modify the metric to save models as rFID is not closely correlated to gFID. PSNR and SSIM are also good choices.

torchrun --nproc_per_node=8 tokenizer/tokenizer_image/xqgan_train.py --config configs/xxxx.yaml

Please modify the configuration file as needed for your specific dataset. We list some important ones here.

vq_ckpt: ckpt_best.pt                # resume
cloud_save_path: output/exp-xx       # output dir
data_path: ImageNet2012/train        # training set dir
val_data_path: ImageNet2012/val      # val set dir
enc_tuning_method: 'full'            # ['full', 'lora', 'frozen']
dec_tuning_method: 'full'            # ['full', 'lora', 'frozen']
codebook_embed_dim: 32               # codebook dim
codebook_size: 4096                  # codebook size
product_quant: 2                     # PQ branch number
v_patch_nums: [16,]                  # latent resolution for RQ ([16,] is equivalent to vanilla VQ)
codebook_drop: 0.1                   # quantizer dropout rate if RQ is applied
semantic_guide: dinov2               # ['none', 'dinov2', 'clip']
disc_epoch_start: 56	             # epoch that discriminator starts
disc_type: dinodisc		     # discriminator type
disc_adaptive_weight: true	     # adaptive weight for discriminator loss
ema: true                            # use ema to update the model
num_latent_code: 256		     # latent token number (must equals to the v_patch_nums[-1] ** 2οΌ‰
start_drop: 3			     # quantizer dropout starts depth

Tokenizer linear probing

torchrun --nproc_per_node=8 tokenizer/tokenizer_image/linear_probing.py --config configs/msvq.yaml

Training code for RobustTok-RAR at RobustTok-README

Training code for VAR (only support MSVRP now)

We follow the VAR training code and our training cmd for reproducibility is

torchrun --nproc_per_node=8 train.py --bs=768 --alng=1e-4 --fp16=1 --alng=1e-4 --wpe=0.01 --tblr=8e-5 --data_path /path/to/ImageNet2012/ --encoder_model vit_base_patch14_dinov2.lvd142m --decoder_model vit_base_patch14_dinov2.lvd142m --product_quant 2 --semantic_guide dinov2 --num_latent_tokens 121 --v_patch_nums 1 1 2 3 3 4 5 6 8 11 --pn 1_1_2_3_3_4_5_6_8_11 --patch_size 11 --vae_ckpt /path/to/ckpt.pt --sem_half True

Inference code for VAR

download inference npz from openai

wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/imagenet/256/VIRTUAL_imagenet256_labeled.npz

and run inference cmd

torchrun --nproc_per_node=2 inference.py --infer_ckpt /path/to/ckpt --data_path /path/to/ImageNet --depth=17 --encoder_model vit_base_patch14_dinov2.lvd142m --decoder_model vit_base_patch14_dinov2.lvd142m --product_quant 2 --semantic_guide dinov2 --num_latent_tokens 121 --v_patch_nums 1 1 2 3 3 4 5 6 8 11 --pn 1_1_2_3_3_4_5_6_8_11 --patch_size 11 --sem_half True --cfg 3.25 --top_k 750 --top_p 0.95

Ablation of MSVR10P2

ID Method Length rFID ↓ gFID ↓ ACC ↑
πŸ”Ά1 Multi-scale residual quantization (Tian et al., 2024) 680 1.92 7.52 -
πŸ”Ά2 + Quantizer dropout 680 1.71 6.03 -
πŸ”Ά3 + Smaller patch size K = 11 265 3.24 6.56 -
πŸ”Ά4 + Product quantization & Parallel decoding 265 2.06 5.96 -
πŸ”Ά5 + Semantic regularization on all branches 265 1.97 5.21 -
πŸ”Ά6 + Semantic regularization on one branch 265 1.57 3.53 40.5
πŸ”·7 + Stronger discriminator 265 1.04 2.94 50.2
πŸ”·8 + Equilibrium enhancement 265 0.80 2.60 58.0

πŸ”Ά1-6 are already in the released paper, and after that πŸ”·7+ are advanced training settings used similar to VAR (gFID 3.30).

Generation

Acknowledge

We would like to thank the following repositories: LlamaGen, VAR and ControlVAR.

Citation

If our work assists your research, feel free to give us a star ⭐ or cite us using

@article{li2024imagefolder,
  title={Imagefolder: Autoregressive image generation with folded tokens},
  author={Li, Xiang and Qiu, Kai and Chen, Hao and Kuen, Jason and Gu, Jiuxiang and Raj, Bhiksha and Lin, Zhe},
  journal={arXiv preprint arXiv:2410.01756},
  year={2024}
}
@article{li2024xq,
  title={XQ-GAN: An Open-source Image Tokenization Framework for Autoregressive Generation},
  author={Li, Xiang and Qiu, Kai and Chen, Hao and Kuen, Jason and Gu, Jiuxiang and Wang, Jindong and Lin, Zhe and Raj, Bhiksha},
  journal={arXiv preprint arXiv:2412.01762},
  year={2024}
}
@misc{qiu2025robustlatentmattersboosting,
      title={Robust Latent Matters: Boosting Image Generation with Sampling Error Synthesis}, 
      author={Kai Qiu and Xiang Li and Jason Kuen and Hao Chen and Xiaohao Xu and Jiuxiang Gu and Yinyi Luo and Bhiksha Raj and Zhe Lin and Marios Savvides},
      year={2025},
      eprint={2503.08354},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.08354}, 
}