🚀 MSFMamba: Multi-Scale Feature Fusion State Space Model for Multi-Source Remote Sensing Image Classification
IEEE TGRS 2025
This repository contains the official implementation of our paper:
📄 MSFMamba: Multi-Scale Feature Fusion State Space Model for Multi-Source Remote Sensing Image Classification (IEEE TGRS 2025)
MSFMamba is an advanced multi-scale feature fusion model specifically designed for multi-source remote sensing image classification. By leveraging state-space modeling techniques, MSFMamba effectively captures both spatial and spectral dependencies, ensuring high accuracy and computational efficiency.
🔍 Key Features:
✅ Multi-Scale Feature Extraction
✅ Cross-Modal Data Fusion
✅ State Space Model for Efficient Representation
✅ Enhanced Fusion for Multi-Source Remote Sensing Data
The dataset used in our experiments can be accessed from the following link:
📥 Download Dataset Berlin and Augsburg
Before running the code, make sure you have the following dependencies installed:
pip install causal-conv1d==1.1.1
pip install mamba-ssm==1.0.1
To train MSFMamba on the Berlin dataset, use the following command:
python train.py --epoch 40 --lr 1e-4 --batchsize 128 --dataset Berlin
--epoch
: Number of training epochs--lr
: Learning rate--batchsize
: Batch size--dataset
: Dataset name
If you have any questions, feel free to contact us via Email:
📧 gaofeng@ouc.edu.cn
📧 jinxuepeng@stu.ouc.edu.cn
We hope MSFMamba helps your research! ⭐ If you find our work useful, please cite:
@article{msfmamba25,
author={Gao, Feng and Jin, Xuepeng and Zhou, Xiaowei and Dong, Junyu and Du, Qian},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={MSFMamba: Multiscale Feature Fusion State Space Model for Multisource Remote Sensing Image Classification},
year={2025},
volume={63},
pages={1-16}}