This repository contains the Python projects completed as part of a Data Analysis with Python certification.
1. Mean-Variance-Standard Deviation Calculator
- Description: A Python function that uses NumPy to calculate the mean, variance, standard deviation, max, min, and sum of the rows, columns, and flattened elements of a 3x3 matrix.
- Libraries/Functions:
- NumPy (
np
):np.array
,reshape
,mean
,var
,std
,max
,min
,sum
,tolist
.
- NumPy (
2. Demographic Data Analyzer
- Description: (Based on provided context, details of this project are not fully clear. It likely involves analyzing demographic data using Pandas.)
- Libraries/Functions:
- Pandas (
pd
): DataFrames, data loading (read_csv
), data manipulation (filtering, calculations).
- Pandas (
3. Medical Data Visualizer
- Description: Visualizes medical examination data using Pandas, Matplotlib, and Seaborn to understand patterns and relationships.
- Libraries/Functions:
- Pandas (
pd
): DataFrames, data loading (read_csv
), data manipulation. - Matplotlib (
plt
): Creating plots (figure
,subplots
,scatter
,plot
,xlabel
,ylabel
,title
,legend
,savefig
). - Seaborn (
sns
): Statistical data visualization (catplot
,heatmap
). - NumPy (
np
): Array operations (e.g., masking for heatmap).
- Pandas (
4. Page View Time Series Visualizer
- Description: Visualizes time series data of freeCodeCamp.org forum page views using Pandas, Matplotlib, and Seaborn to understand daily, yearly, and monthly trends.
- Libraries/Functions:
- Pandas (
pd
): Time series data handling (setting index to date, creating year/month columns), data manipulation (melt
,value_counts
,groupby
,unstack
). - Matplotlib (
plt
): Line charts, bar charts, box plots (plot
,bar
,boxplot
,xticks
,tight_layout
). - Seaborn (
sns
): Box plots (boxplot
).
- Pandas (
5. Sea Level Predictor
- Description: Analyzes a dataset of global average sea level change and uses linear regression from SciPy to predict sea level rise through the year 2050.
- Libraries/Functions:
- Pandas (
pd
): Data loading (read_csv
), data filtering. - Matplotlib (
plt
): Scatter plots, line plots (scatter
,plot
,xlabel
,ylabel
,title
,legend
,savefig
). - SciPy (
scipy.stats
): Linear regression (linregress
). - NumPy (
np
): Creating numerical ranges (arange
).
- Pandas (