Skip to content

puar-playground/LRA-diffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

29fa9a6 · Feb 23, 2024
May 3, 2023
May 3, 2023
May 8, 2023
May 8, 2023
May 3, 2023
Feb 10, 2023
May 8, 2023
May 4, 2023
Nov 14, 2023
Feb 23, 2024
May 3, 2023
Feb 10, 2023
May 8, 2023
May 8, 2023
May 8, 2023
May 8, 2023
Aug 3, 2023

Repository files navigation

Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels

source code of the LRA-Diffusion Models for Learning from Noisy Labels.

1. Preparing python environment

Install requirements.

pip install -r requirements.txt

2. Pre-trained model & Checkpoints

  • The pre-trianed SimCLR encoder for CIFAR-10 and CIFAR-100 is provided in the model folder.
  • CLIP models are available in the python package at here. Install without dependency:
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git  --no-dependencies

Trained checkpoints for the diffusion models are available at here.

3. Generate the Poly-Margin Diminishing (PMD) Noisy Labels

The noisy labels used in our experiments are provided in folder noisy_label. The noisy labels are generated following the original paper.

4. Run demo script to train the LRA-diffusion

4.1 CIFAR-10 and CIFAR-100

Default values for input arguments are given in the code. An example command is given:

python train_CIFAR.py --device cuda:0 --noise_type cifar10-1-0.35 --fp_encoder SimCLR --nepoch 200 --warmup_epochs 5

4.2 Food-101N and Food-101

The dataset should be downloaded according to the instruction here: Food-101N
Default values for input arguments are given in the code. An example command is given:

python train_Food101N.py --gpu_devices 0 1 2 3 --nepoch 200 --warmup_epochs 1 --feature_dim 1024

4.3 Clothing1M

The dataset should be downloaded according to the instruction here: Clothing1M. Default values for input arguments are given in the code.

The training data is selected by the pre-trained CC classifier. An example command using multiple gpus is given:

python train_Clothing1M.py --gpu_devices 0 1 2 3 --nepoch 200 --warmup_epochs 1 --feature_dim 1024

4.4 WebVision

Download WebVision 1.0 and the validation set of ILSVRC2012 datasets. The ImageNet synsets labels for ILSVRC2012 validation set is provided here.

python train_WebVision.py --gpu_devices 0 1 2 3 --nepoch 200 --warmup_epochs 1 --feature_dim 1024

Reference

@article{chen2024label,
  title={Label-retrieval-augmented diffusion models for learning from noisy labels},
  author={Chen, Jian and Zhang, Ruiyi and Yu, Tong and Sharma, Rohan and Xu, Zhiqiang and Sun, Tong and Chen, Changyou},
  journal={Advances in Neural Information Processing Systems},
  volume={36},
  year={2024}
}

About

This is the source code of LRA-diffusion for learning from noisy labels

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages