Skip to content

Removing unnecessary comp_shape from class NormalMixture #7098

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 4 additions & 8 deletions pymc/distributions/mixture.py
Original file line number Diff line number Diff line change
Expand Up @@ -524,10 +524,6 @@ class NormalMixture:
the component standard deviations
tau : tensor_like of float
the component precisions
comp_shape : shape of the Normal component
notice that it should be different than the shape
of the mixture distribution, with the last axis representing
the number of components.

Notes
-----
Expand All @@ -554,16 +550,16 @@ class NormalMixture:
y = pm.NormalMixture("y", w=weights, mu=μ, sigma=σ, observed=data)
"""

def __new__(cls, name, w, mu, sigma=None, tau=None, comp_shape=(), **kwargs):
def __new__(cls, name, w, mu, sigma=None, tau=None, **kwargs):
_, sigma = get_tau_sigma(tau=tau, sigma=sigma)

return Mixture(name, w, Normal.dist(mu, sigma=sigma, size=comp_shape), **kwargs)
return Mixture(name, w, Normal.dist(mu, sigma=sigma), **kwargs)

@classmethod
def dist(cls, w, mu, sigma=None, tau=None, comp_shape=(), **kwargs):
def dist(cls, w, mu, sigma=None, tau=None, **kwargs):
_, sigma = get_tau_sigma(tau=tau, sigma=sigma)

return Mixture.dist(w, Normal.dist(mu, sigma=sigma, size=comp_shape), **kwargs)
return Mixture.dist(w, Normal.dist(mu, sigma=sigma), **kwargs)


def _zero_inflated_mixture(*, name, nonzero_p, nonzero_dist, **kwargs):
Expand Down
9 changes: 2 additions & 7 deletions tests/distributions/test_mixture.py
Original file line number Diff line number Diff line change
Expand Up @@ -820,10 +820,8 @@ def test_normal_mixture_nd(self, seeded_test, nd, ncomp):
mus = Normal("mus", shape=comp_shape)
taus = Gamma("taus", alpha=1, beta=1, shape=comp_shape)
ws = Dirichlet("ws", np.ones(ncomp), shape=(ncomp,))
mixture0 = NormalMixture("m", w=ws, mu=mus, tau=taus, shape=nd, comp_shape=comp_shape)
obs0 = NormalMixture(
"obs", w=ws, mu=mus, tau=taus, comp_shape=comp_shape, observed=observed
)
mixture0 = NormalMixture("m", w=ws, mu=mus, tau=taus, shape=nd)
obs0 = NormalMixture("obs", w=ws, mu=mus, tau=taus, observed=observed)

with Model() as model1:
mus = Normal("mus", shape=comp_shape)
Expand Down Expand Up @@ -867,7 +865,6 @@ def ref_rand(size, w, mu, sigma):
"mu": Domain([[0.05, 2.5], [-5.0, 1.0]], edges=(None, None)),
"sigma": Domain([[1, 1], [1.5, 2.0]], edges=(None, None)),
},
extra_args={"comp_shape": 2},
size=1000,
ref_rand=ref_rand,
)
Expand All @@ -878,7 +875,6 @@ def ref_rand(size, w, mu, sigma):
"mu": Domain([[-5.0, 1.0, 2.5]], edges=(None, None)),
"sigma": Domain([[1.5, 2.0, 3.0]], edges=(None, None)),
},
extra_args={"comp_shape": 3},
size=1000,
ref_rand=ref_rand,
)
Expand All @@ -902,7 +898,6 @@ def test_scalar_components(self):
w=np.ones(npop) / npop,
mu=mus,
sigma=1e-5,
comp_shape=(nd, npop),
shape=nd,
)
z = Categorical("z", p=np.ones(npop) / npop, shape=nd)
Expand Down