Machine learning library for classification tasks
-
Updated
Jan 26, 2025 - C++
Machine learning library for classification tasks
Decision Tree Classifier and Boosted Random Forest
Some decision tree algorithms implemented in C++
Une application C++ pour le triage intelligent des patients en situation d'urgence. Elle utilise un modèle d'apprentissage automatique (Random Forest) entraîné en Python pour évaluer les risques et prioriser les soins en fonction des symptômes et des résultats. Le système se met automatiquement à jour avec les nouvelles données patients.
Developed for Veritas Technologies LLC, this project optimizes DB workloads by predicting future file accesses and caching them in advance. Utilizing inotify for file event monitoring and Python for training a Random Forest model, it enhances efficiency and reduces latency compared to traditional caching methods, adapting to dynamic data access.
Add a description, image, and links to the random-forest-classifier topic page so that developers can more easily learn about it.
To associate your repository with the random-forest-classifier topic, visit your repo's landing page and select "manage topics."