1.0 Terminology and basic concepts
2.3.1 - Measures of Dispersion - Intro
3.1 - Introduction to Probability
3.3 - (Some) Rules of Probability
4.1 - Introduction to Probability Distributions
4.4 - Probability Mass Function and Probability Density Function
4.10 - Exponential and Laplace Distributions
4.11 - Bernoulli, Binomial, Multinomial Distributions
5.1.2 - Statistics and Machine Learning
5.2.9 - Correlation (expanded): Pearson's
6.1.1 - Independent vs Dependent variables
6.1.3 - Ordinary Least Squares (OLS)
6.1.4 - Multiple Linear Regression
6.1.5 - Cost Function, Gradient Descent, Residuals
6.1.7 - Regularization, Feature Scaling, Cross Validation
6.1.8 - Ridge Regression, Lasso Regression, Elastic Net
6.1.10 - Cross Validation and Grid Search
6.1.12 - k-Nearest Neighbors (kNN)
6.1.13 - Support Vector Machines (SVM) and Support Vector Regression (SVR)
6.1.17 - Dimensionality Reduction
6.1.18 - Principal Component Analisys (PCA)
6.1.19 - Naive Bayes and Natural Language Processing
6.2.2 - Hierarchical clustering
5.1.2 - Statistics and Machine Learning
6.2.2 - Hierarchical clustering
6.2.4 - Dimensionality Reduction
Appendix Y - Subset Selection Theory