- Have Python 3.10 or higher installed
- Preferably having uv installed
- Steps to install uv https://docs.astral.sh/uv/getting-started/installation/
- Use node 22+ NPM 10.0.0 or higher
- Steps to install NPM https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
- Install a MCP Client
- Claude Desktop: https://claude.ai/download
- Continue on VSCode:Link for Continue on VSCode
- Cursor: Link for Cursor MCP Instructions
Create virtual environment with uv for python 3.11 and install dependencies using uv pip
uv python install 3.11
uv venv --python 3.11
uv .venv/bin/pip install -r requirements.txt
AZURE_OPENAI_API_KEY= The API key for your Azure OpenAI service
AZURE_OPENAI_ENDPOINT= The endpoint for your Azure OpenAI service
AZURE_OPENAI_EMBEDDING_DEPLOYMENT= The deployment name for your Azure OpenAI embedding service
AZURE_OPENAI_DEPLOYMENT= The deployment name for your Azure OpenAI model
AZURE_OPENAI_EMBEDDING_VERSION= The version of the Azure OpenAI embedding service
[Optional] Run the notebook to build the local context.The notebook is located at notebook/langchain_tool.ipynb
[Optional] The file notebook/sklearn_vectorstore.parquet is what is generated by the notebook and is used by the server for vector data.
Replace the PATH value in paychex-mcp.py with the path to your local context
PATH = "<PATH_TO_YOUR_REPO>/notebook/"
The MCP inspector is a developer tool for testing and debugging MCP servers.
bash-3.2$ npx @modelcontextprotocol/inspector
Add the env values and arguments to your MCP Inspector command
bash-3.2$ npx @modelcontextprotocol/inspector \
<path_to_repo>/.venv/bin/python \
/<path_to_repo>/paychex-mcp.py \
-e AZURE_OPENAI_API_KEY=<API_KEY> \
-e AZURE_OPENAI_ENDPOINT=<ENDPOINT> \
-e AZURE_OPENAI_EMBEDDING_DEPLOYMENT=<EMBEDDING_DEPLOYMENT> \
-e AZURE_OPENAI_DEPLOYMENT=<DEPLOYMENT> \
-e AZURE_OPENAI_EMBEDDING_VERSION=<EMBEDDING_VERSION>
You can pass both arguments and environment variables to your MCP server. Arguments are passed directly to your server, while environment variables can be set using the -e flag:
npx @modelcontextprotocol/inspector build/index.js arg1 arg2
npx @modelcontextprotocol/inspector -e KEY=value -e KEY2=$VALUE2 node build/index.js
npx @modelcontextprotocol/inspector -e KEY=value -e KEY2=$VALUE2 node build/index.js arg1 arg2
npx @modelcontextprotocol/inspector -e KEY=$VALUE -- node build/index.js -e server-flag
npx -y @modelcontextprotocol/inspector npx @modelcontextprotocol/server-filesystem arg1 agr2
The mcp-config
folder contains configuration files necessary to set up and run MCP (Model Context Protocol) servers for various environments. Here are the steps to utilize these configuration files effectively:
Navigate to the mcp-config
folder in your project directory. Inside, you will find JSON configuration files for different setups, such as:
claude_desktop_config.json
for Claude Desktop setup.config.yaml
for continue VS Code Extension setup.
Before using the configuration files, you might need to edit them to match your local or deployment environments. For example, in claude_desktop_config.json
or config.yaml
, replace placeholders such as <path to your Python executable>
, <your Azure OpenAI API key>
, and others with actual values relevant to your setup.
MCP Server List Filesystem, Git, Atlassian, etc. servers Filesystem server Git server Atlassian server