Skip to content

vturrisi/torchfuel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DEPRECATED SINCE I'M NOW USING PYTORCH LIGHTNING

torchfuel

Build Status codecov

Build on top of pytorch to fuel productivity.

Features

  • Generic Trainer
  • Classification Trainer (with cross-entropy loss)
  • MSE Trainer
  • Additional utility layers
  • Better dataloaders (currently only for image datasets)

Classification Example

import os
import time
from collections import namedtuple

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import datasets, models, transforms

from torchfuel.data_loaders.image import ImageDataLoader
from torchfuel.trainers.classification import ClassificationTrainer
from torchfuel.transforms.noise import DropPixelNoiser


dl = ImageDataLoader(
    train_data_folder='imgs/train',
    eval_data_folder='imgs/eval',
    pil_transformations=[transforms.RandomHorizontalFlip()]
    tensor_transformations=[DropPixelNoiser()],
    batch_size=64,
    imagenet_format=True,
)

train_dataloader, eval_dataloader, n_classes = dl.prepare()

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = Model(...).to(device)

optimiser = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimiser, 'min', patience=20)

trainer = ClassificationTrainer(device, model, optimiser, scheduler,
                                checkpoint_model=True, model_name='test.pt')

fitted_model = trainer.fit(epochs, train_dataloader, eval_dataloader)

How to install

Clone repository and run:

pip install .

Optionally (not up to date):

pip install torchfuel

About

Build on top of pytorch to fuel productivity

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages