Skip to content

[ICLR 2025 - Workshop AgenticAI] Large Language Models powered Neural Solvers for Generalized Vehicle Routing Problems

License

Notifications You must be signed in to change notification settings

Fsoft-AIC/NCO-LLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Large Language Models powered Neural Solvers for Generalized Vehicle Routing Problems

Conference Workshop Paper

This repository contains code for an efficient LLM-guided fine-tuning approach to enhance the large-scale generalization of Neural Combinatorial Solvers for solving TSP (Traveling Salesman Problem) and CVRP (Capacitated Vehicle Routing Problem).

Table of Contents

Dependencies

For Attention bias via LLM Design

annotated-types==0.6.0
antlr4-python3-runtime==4.9.3
anyio==4.2.0
certifi==2024.7.4
distro==1.9.0
h11==0.14.0
httpcore==1.0.2
httpx==0.26.0
hydra-core==1.3.2
idna==3.7
numpy==1.23.3
omegaconf==2.3.0
openai==1.8.0
packaging==23.2
pydantic==2.5.3
pydantic_core==2.14.6
PyYAML==6.0.1
scipy==1.11.4
sniffio==1.3.0
tqdm==4.64.1
typing_extensions==4.9.0

For Fine-tuning LEHD and POMO

Python=3.8.6
torch==1.12.1
numpy==1.23.3
matplotlib==3.5.2
tqdm==4.64.1
pytz==2022.1
vrplib==1.0.0

If any package is missing, just install it following the prompts.

Implementation

This project's structure is clear, the codes are based on .py files, and they should be easy to read, understand, and run.

Basic Usage

Attention bias via LLM Design

To run the code, execute main.py:

python Attention-LLM_design/main.py

Fine-tuning Models

To fine-tune pre-trained models, i.e., LEHD-LLM and POMO-LLM, please run train_ex.py in each sub-folders TSP and CVRP:

# For TSP
python LEHD-LLM/TSP/train_ex.py
python POMO-LLM/NEW_py_ver/TSP/train_ex.py

# For CVRP
python LEHD-LLM/CVRP/train_ex.py
python POMO-LLM/NEW_py_ver/CVRP/train_ex.py

Evaluation

To evaluate LEHD-LLM and POMO-LLM on synthetic datasets, run test_ex.py in each sub-folders TSP and CVRP:

# For TSP
python LEHD-LLM/TSP/test_ex.py
python POMO-LLM/NEW_py_ver/TSP/test_ex.py

# For CVRP
python LEHD-LLM/CVRP/test_ex.py
python POMO-LLM/NEW_py_ver/CVRP/test_ex.py

To evaluate LEHD-LLM and POMO-LLM on TSPLib and CVRPLibe, run test_tsplib.py and test_vrplib.py in each sub-folders TSP and CVRP:

# For TSP
python LEHD-LLM/TSP/test_tsplib.py
python POMO-LLM/NEW_py_ver/TSP/test_tsplib.py

# For CVRP
python LEHD-LLM/CVRP/test_vrplib.py
python POMO-LLM/NEW_py_ver/CVRP/test_vrplib.py

Project Structure

Attention-LLM_design/
LEHD-LLM/
    CVRP/
    TSP/
    utils/
POMO-LLM/
    NEW_py_ver/
checkpoints/
LICENSE.md
README.md

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Citation

If you find this project useful, please cite our paper:

@inproceedings{
tran2025large,
title={Large Language Models powered Neural Solvers for Generalized Vehicle Routing Problems},
author={Cong Dao Tran and Quan Nguyen-Tri and Huynh Thi Thanh Binh and Hoang Thanh-Tung},
booktitle={Towards Agentic AI for Science: Hypothesis Generation, Comprehension, Quantification, and Validation},
year={2025},
url={https://openreview.net/forum?id=EVqlVjvlt8}
}

About

[ICLR 2025 - Workshop AgenticAI] Large Language Models powered Neural Solvers for Generalized Vehicle Routing Problems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages